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This  paper  describes  how  spatial  dependence  can  be  incorporated  into  statistical  models  for  crop  yield
along  with  the dangers  of ignoring  it.  In particular,  approaches  that  ignore  this  dependence  suffer  in  their
ability  to  capture  (and  predict)  the  underlying  phenomena.  By  judiciously  selecting  biophysically  based
explanatory  variables  and  using  spatially-determined  prior  probability  distributions,  a Bayesian  model
for  crop  yield  is  created  that  not  only  allows  for increased  modelling  flexibility  but  also  for  improved
prediction  over  existing  least-squares  methods.  The  model  is  focused  on  providing  efficient  predictions
rop  water stress index
anadian  Prairies
ayesian
moothing
patial  correlation

which  stabilize  the  effects  of  noisy  data. Prior  distributions  are  developed  to  accommodate  the spatial
non-stationarity  arising  from  distinct  between-region  differences  in  agricultural  policy  and  practice.  In
addition,  a range  of possible  dimension–reduction  schemes  and  basis  expansions  are  examined  in  the
pursuit  of improved  prediction.  As  a result,  the  model  developed  has improved  prediction  performance
relative  to  existing  models,  and  allows  for  straightforward  interpretation  of  climatic  effects  on  the  model’s
output.
. Introduction

This paper presents a method for forecasting wheat crop yields
n the Canadian Prairie Provinces—a challenging task due to dra-

atic variability in yield over space and time. Its importance,
owever, should not be understated: wheat is one of Canada’s pri-
ary exports, accounting for 12% of wheat and barley traded in

he world market. Thus variation in yield has considerable impact
oth within and beyond Canadian borders (Schmitz and Furtan,
000). Enabling effective crop management, handling, and market-

ng thus requires accurate predictions of crop yield that account for
nd explain these variations. For example, these forecasts are help-
ul in setting insurance premiums and futures prices as well as in

anaging grain transport. Since spatial and temporal climate vari-
bility affect crop yields (Stone and Meinke, 2005; Potgieter et al.,
006), a crop yield forecasting method must include climate as an
ssential component if it is to be successful.

Several process-based models have been successfully used for
rop yield prediction including the Agricultural Production Sys-
ems Simulator (APSIM) in Australia (Keating et al., 2003) as well
s a web-based tool developed by the United States’ Southeast
limate Consortium (Jagtap et al., 2002). These process-based mod-

ls typically employ tunable and user adjustable deterministic
nd stochastic models to simulate biological and physical pro-
esses related to crop yield. While these models use knowledge
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pertaining to the individual processes, they often require signifi-
cant input from the user, including a wide range of meteorological
and environmental variables which may  be difficult or expensive
to obtain.

In contrast to the above, traditional statistical techniques are
purely empirical. While these methods may  result in accurate pre-
dictions, they typically lack the interpretability of process-based
models (Barnett, 2004). As a result of this criticism, recent years
have seen the development of statistical models that also pro-
vide interpretation of the underlying biophysical process (see, for
example, Stephens (1995), Hansen et al. (2002)). One such process
knowledge-based approach involves water stress indices (Potgieter
et al., 2005, 2006; Qian et al., 2009a,b), the result of which has
been of tremendous use and benefit to stakeholders, allowing
for prediction and understanding of crop yield anomalies. While
these models have improved the prediction of crop yield, there
exists scope for improvement through (a) providing an efficient
dimension reduction of explanatory variables; (b) accounting for
uncertainty in the estimated technology trend; (c) modelling spa-
tial correlation between regions.

This paper describes the results of a project coordinated by Agri-
culture and Agri-foods Canada to develop a model that explains
and predicts wheat yield and its relation to climatic variables. With
plans for an online implementation in the future, efficiency was
required as a feature of the model, as was  the ability to stabi-

lize the effects of noisy measurements. Building on earlier work,
we employ a crop water stress index (SI) to provide explana-
tory power for a new crop yield predictor (De Jong and Bootsma,
1996). To improve prediction over existing approaches, we  extract

dx.doi.org/10.1016/j.agrformet.2011.09.013
http://www.sciencedirect.com/science/journal/01681923
http://www.elsevier.com/locate/agrformet
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ig. 1. Mean residuals from model (1). We  observe that the model residuals are
patially correlated.

 sensitive yet low-dimensional summary of this stress index,
omparing various alternatives and bases before ultimately select-
ng principal components. We  then demonstrate its improved
rediction performance compared to currently used windowed
verage approaches. In contrast to previous work which mod-
ls each agricultural region separately, we create a unified model
hat allows strength to be borrowed from adjacent and nearby
egions, thus stabilizing both inference and prediction. By employ-
ng a spatially-motivated context-specific prior distribution on the
arameters of interest, we account for and use spatial correlation
etween sites while smoothing and consequently improving pre-
ictions.

Following this introduction, Section 2 describes the crop yield
orecasting problem and available data. This section works through

 series of successively improved models, eventually leading to
 Bayesian model in Section 2.3 which jointly models all regions
imultaneously. Model testing and diagnostics are explored in
ection 3. Lastly, Section 4 concludes the work.

. Materials and methods

This  paper models crop yield in the Canadian Prairies as a func-
ion of climate-related explanatory variables. The data include
nnual wheat yields (in bushels per acre) along with associated
easurements of a crop water stress index and growing degree day

both described later) for 40 agricultural regions (plotted in Fig. 1)
cross the Canadian Prairies from 1976 to 2006. The agricultural
egions are those used in the 2006 Canadian Census of Agricul-
ure, through which the data are also obtained, and are determined
rom climate and soil information. For each of the 31 years and
0 regions, yield is an aggregated average across the region. Like-
ise, stress index and growing degree day are calculated regionally,

ut on a daily basis throughout the growing season (April 1 to
eptember 30).

.1.  Incorporating soil water

The  well recognized influence of soil water on crop yields dic-
ates its inclusion in any yield prediction model (De Jong and
ootsma, 1996). However, due to the time-consuming and costly
rocess of measuring soil water content, in practice its effects
ust be inferred from more widely available environmental vari-

bles such as precipitation, temperature, and easily measured crop
nd soil-related factors. A suite of models have been developed
hich attempt to understand soil water availability in the con-

ext of these environmental variables. Beginning with simple water

alance approaches that balance precipitation and soil water stor-
ge with evapotranspiration and water runoff, these models have
ncreased in their complexity over the years (Thornthwaite, 1948;
e Jong and Bootsma, 1996). For the reasons given below we  focus
t Meteorology 152 (2012) 223– 232

on  budget models, which build on the premise that above a certain
threshold (called the ‘field capacity’), soil cannot absorb any more
water and therefore any additional water is drained off through
runoff or drainage. Also, if the soil water fails to be replenished
through precipitation, irrigation, or other sources, the soil reaches
a point where plant roots are no longer capable of uptaking water.
This stage is known as the ‘wilting point’.

Evapotranspiration, which describes the sum of evaporation and
plant transpiration, measures the water lost from plants, soil, and
other land surfaces into the atmosphere. There are two key compo-
nents in the budget model, potential evapotranspiration (PET) and
actual evapotranspiration (AET). PET represents the atmospheric
demand for evapotranspiration; specifically, it accounts for the
energy available to evaporate water and transport it into the lower
atmosphere. AET is the actual water content available for evapo-
ration and transpiration, and relies on plant physiology and soil
characteristics for its calculation. When the soil has ample water,
the actual evapotranspiration (AET) can equal the PET. However
when the soil is not at its field capacity, AET will be less than PET.
More details on these concepts and soil science in general may be
found in Brady et al. (1999).

Budget  models are straightforward to implement since they
require a minimum of meteorological data as well as soil field
capacities and wilting points. While more advanced models have
been built which include soil hydraulic characteristics and more
complex relationships between soil, plant, and meteorological sys-
tems, these models require considerably more information from
the user, including detailed soil and plant characteristics. Because
of the additional variables required by these models, we  employ a
budget model in the remainder of this work. Our model uses crop
water stress index (SI) over agricultural land, defined as 1-AET/PET
(Qian et al., 2009a,b). This quantity will be near 0 when water is
plentiful in the soil and near 1 when the plant is stressed by a
lack of available moisture. Intuition might suggest directly includ-
ing precipitation, temperature, soil and plant information into the
model. However, doing so would add a large number of variables,
especially considering that many of these variables are observed
for every day of the growing season. Using the SI instead provides
an economical reduction in the dimensionality of the description
space in a way  that respects the biophysical processes involved in
soil water movement and availability.

2.1.1. Predicting yield with SI
We begin by detailing the process of fitting a regression model

to crop yield using least squares (LS). First let yj,t, j = 1, . . .,  40 be
the yield from region j for years t = 1976, . . .,  2006. Since SI is a
daily value, we  create an annual average for each year and region;
let sij,t denote the vector of these means in year t for each region
j. We begin by fitting a common regression model to all regions,
specifically

yj,t = ˇ0 + ˇ1t + ˇ2sij,t + �j,t . (1)

Here  �j,t for year t and region j represents a combination of model
and measurement error. While previously developed statistical
models for crop yield account for a technology trend by first fit-
ting a regression on time and then modelling the residuals, such
approaches yield little understanding about the uncertainty asso-
ciated with forecasting. In particular, while forecasts that use
detrended data may  be similar, their associated variances will be
biased as uncertainty in the trend model is ignored. In fact, to
properly account for all sources of variability the technology trend
should be an integral part of any forecasting model.
To begin, note that the simple model in Eq. (1) relies on only 3
parameters—all regions are described by the same equation. The
validity of inference for such a model relies on assumptions includ-
ing for instance that the errors �j,t are stochastically independent
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or all j, t. To test this assumption, we plot the mean residual
averaged over the 31 years) for each of the 40 stations in Fig. 1.
his figure makes it clear that the residuals are spatially correlated.
or instance, the residuals in Alberta (the western-most Prairie
rovince) are much larger than the other two provinces, highlight-
ng the fact that the model is biased, particularly in central Alberta.
onsidering the mean and standard deviation of crop yield across
he Prairies are 30.9 and 8.2, respectively, the average residual value
f 13.5 in this region indicates that the model is consistently under-
stimating the crop yield there.

To gain descriptive power, researchers have expanded the above
odel by fitting a different regression model to each region, specif-

cally

j,t = ˇ0,j + ˇ1,jt + ˇ2,jsij,t + �j,t . (2)

he  expanded model now accounts for 61% of crop yield variation,
ompared to 33% for (1), albeit at the expense of additional param-
ters in its mean structure. In fact, by assigning a unique parameter
o each region, this expanded model has 3 × 40 = 120 parameters.
y using such models, albeit with potentially modified/additional
xplanatory variables, several authors have been able to create
airly accurate predictions of crop yield (Potgieter et al., 2005; Qian
t al., 2009b). It is important to note that the large number of pre-
ictor variables (120) makes this model prone to overfitting; while
ome authors have used cross-validation to prevent this (i.e. Qian
t al., 2009b), others have sought to further improve model fit by
onducting extensive calibration to tune the explanatory variables
i.e. Potgieter et al., 2005). It is well understood that smoothed, or
enalized, models have better prediction properties than larger,
ore variable models (Hastie et al., 2009). This leads us to pre-

er the most parsimonious model yielding accurate forecasts and
o select explanatory variables which provide optimal prediction
ower for crop yield. While earlier models have been examined
ith regards to their model fit (as measured through R2), a much
referred metric is model prediction performance (as measured
hrough cross-validation).

While  the availability of SIs for every day of the growing sea-
on (in our case April 1 to September 30) means its vector of
easured values is of very large dimension, good modelling prac-

ice requires that this dimension be reduced before introducing
he vector into the regression model. At one extreme, we  could
o what we did previously, and use just the mean of these daily
I values over the growing season, a one-dimensional feature, as
ur explanatory variable. However, that would oversimplify the
I’s role, since plant growth is influenced more at certain times
han others during the growing season. As an extreme example,
f the crop is harvested in early September, the SI values in late
eptember would aid little in predicting crop yield. To find a low-
imensional feature that provides good predictive power for crop
ield, we could average over a reduced window, that is, exclude
I values early and late in the season (Qian et al., 2009b). This
eflects the point just made that SIs early and late in the season
ay not be correlated with crop yield. Fig. 2 shows this correlation

etween SI and crop yield for each day in the summer, organized
y province. This figure suggests we average over days 80 through
60, rather than the entire growing season. However, this produces
nly a modest improvement, 60.72% of crop yield’s variability now
eing explained instead of 60.56% using the average over the entire
eason as before. This plot also reveals large spatial variability, par-
icularly between provinces. We  explore this issue in more detail
ater.

There exists considerable scope for tuning this window; for

nstance Potgieter et al. (2005) select unique window start and end
oints for each region to achieve an excellent fit—over 75% of vari-
tion explained. However such tuning entails much attention to
etail. On top of the upper and lower limits for the averaging to
Fig. 2. Correlation of SI and yield over time. Correlations smoothed with Lowess
smoothing.  From this we see that SI is most correlated with yield in an intermediate
part  of the season, namely days 80 through 160.

take place, Potgieter et al. (2005) calibrate potential available soil
water capacities, the maximum number of sowings and the rain-
fall amount triggering planting in each region. In other words, in
addition to the corresponding regression coefficients, this tuning
in effect adds 5 additional parameters per region, which in our case
would increase the number of parameters being fitted in (2) from
120 to 320, leading most likely to serious over-fitting when con-
sidering that such an approach still uses an average SI over the
growing season, not accounting for temporally-varying impact of
SI. To quote John von Neumann:

With four parameters I can fit an elephant and with five I can
make  him wiggle his trunk.

As such, a preferred alternative would be a lower dimensional fea-
ture which captures the key components of the stress index. In
addition, we would like to include information which allows for
the impact of SI on yield to vary over the growing season.

To  capture more information from the SI values than would be
available from simple averaging, we  extract the principal compo-
nents and hence main sources of variation from the stress index.
To be more precise, after subtracting the average SI from each day,
the first principal component is the linearly transformed vector
of growing season SI values that accounts for the most variabil-
ity in the SI values. The second, which is orthogonal to the first,
explains the next largest amount of variation, and so on. Each
observation, in this case each region—year combination, also has
a set of loadings that, when multiplied by the corresponding prin-
cipal components, return the original observation. Fig. 3 shows the
subtracted mean process as well as the first four principal compo-
nents that together show the SIs history over the growing season
of our study. Fig. 3(a) reveals firstly the primary shape of the stress
index, showing that initially – from April 1 – the stress is moderate,
increasing until May, followed by a gradual decline until it bot-
toms out in July. It then returns to its highest values by the end of
September. The first component (Fig. 3(b)), which describes 46.9%
of the variation in SI, captures a valley in the SI cycle around late
August. The second component, which accounts for 14.6% of the
variation, shows SI’s decline into its July valley followed by its rise
to its early September peak. The orthogonality of the first two com-
ponents is apparent from (b). The third and last major component
of SI’s variation captures its low April start. Altogether, the first 4

principal components account for 78.5% of the variation in SI over
the growing season. Beyond 4 principal components we observed
little in terms of improved modelling fit and a reduction in predic-
tion performance, as shown in Figs. 4 and 5. Thus by including the
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Fig. 3. Principal components and mean for SI. This figure depicts the major patterns in the variation of the stress index (unitless) over the growing season. Observe how the
first  four principal components pick up deviations from the overall pattern in (a), and rev
by  things like patterns in precipitation and temperature. Together these four components
need  for the high dimensional vector of daily SI values.
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Fig. 4. R2 of the crop yield model for a range of bases and sparsity levels. From this
we  notice that principal components (PCA) provide better model fit for all sparsity
levels.

Fig. 5. Cross-validation RMSE (bushels per acre) of the crop yield model for a range
of bases and sparsity levels. From this we notice that principal components (PCA)
provide better prediction than the wavelet bases for all sparsity levels.
eal the peaks and valleys of the stress cycle over the course of the summer induced
 capture most of the variation in stress in a very economical way and eliminate the

loadings for these 4 principal components as explanatory variables,
we have created a four-dimensional feature which accounts for a
large proportion of variation in the stress index.

Note that the first SI principal components aren’t necessarily the
best predictors of yield. However, LASSO – a penalized least squares
variable selection method – in fact selects these same four princi-
pal components as the best four (Hastie et al., 2009). This choice of
feature also has a natural biophysical interpretation. For instance,
a large and positive regression coefficient for the loadings corre-
sponding to principal component 3 would imply that a reduction in
stress in early April is highly connected with increased crop yield.
By using this approach, the explained variance of the regression
model increases from 60.56% from averaging SI over the growing
season to 70.06%. In addition, as discussed above, the inclusion of
principal components allows the user to gain intuition about the
effect different seasonal patterns in the stress index will have on
crop yield in a way averaging across the season cannot. Using these
principal component loadings, our new model is

yj,t = ˇ0,j + ˇ1,jt + ˇ2,jPC1j,t + · · · + ˇ5,jPC4j,t + �j,t . (3)

where  PC1j,t indicates the loading for principal component 1 in
region j and year t.

2.1.2.  Alternative bases and levels of sparsity
Because of their widely documented ability to model complex

nonlinear signals while maintaining sparsity, we  briefly explore
wavelet bases as an alternative to principal components (Mallat,
2009). Specifically, we examine a variety of different wavelet bases
and levels of sparsity both in terms of cross-validated prediction
error as well as R2. Fig. 4 plots R2 of the yield model for various
bases and levels of sparsity. From this plot we  see that principal
components dominate in terms of model fit. While R2 measures
how well a model fits to data, it is not a good indicator of a
model’s prediction abilities. As such, Fig. 5 plots cross-validation
root mean squared error (in bushels per acre) for each basis and
sparsity level. Once again we  observe that principal components
outperform wavelets. From these figures we conclude that prin-
cipal components lead to a model with better fit and prediction
performance. This example highlights the need to be selective in the

choice of basis to represent stress index and other variables in such
a model. While wavelets excel at representing piece-wise smooth
models in a very sparse way (requiring the storage of only 1 vector –
the mother wavelet – as well as a series of indices), this is also their
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while incorporating spatial information allows us to continue to
make predictions even in the presence of missing or noisy data.
If a measuring station goes out of operation temporarily, its miss-
ing values may  be inferred from data collected at nearby regions

Table 1
Features of various models.

Model Parameters Effective
parameters

R2 CV RMSE

1: Single LS 3 3 .33 6.83
2: LS with SI 120 120 .61 5.79
3: LS with PCA 240 240 .70 5.72
4: LS with PCA +GDD 280 280 .73 5.69
5: Bayes 283 139 .70 5.35
L. Bornn, J.V. Zidek / Agricultural and

ownfall in some circumstance such as this one which require a
icher representation.

.2.  Incorporating temperature

Temperature  affects a plant’s development and growth in a vari-
ty of ways, in particular its photosynthesis and respiration. In
eneral, temperature affects plant functioning through its action
n enzymatic reactions. At low temperatures, enzyme proteins are
ot sufficiently flexible to complete the conformation necessary for
nzymatic reaction. Conversely, high temperatures can coagulate
he enzyme leading to similar barriers to the reaction. Alongside a

inimum and maximum temperature to allow growth, most plants
ave an optimum temperature to encourage growth. For instance,
itchie and NeSmith (1991) conclude that the minimum and opti-
um temperatures for wheat are respectively 0 and 20–25 ◦C. As a

esult of temperature’s influence on plant development, we suspect
hat its inclusion into the model will result in prediction perfor-

ance gains. In addition, by directly including temperature effects
nterpreting impacts of climate on yield is made more straightfor-

ard.

.2.1. Growing degree day
While temperature could go directly into the model, its mea-

urement in hourly or smaller increments creates a considerable
mount of data. As a result, some dimension reduction is needed to
imit the number of explanatory variables. One could do this using
ust the maximum and minimum daily temperatures or better still,

 one dimensional summary that combines the two. Thus ‘grow-
ng degree day’ (GDD) measures the heat accumulation in a region
ased on local weather by taking an average of the daily minimum
nd maximum and subtracting a base temperature as follows:

GDD = max
(

0,
Tmax + Tmin

2
−  Tbase

)
.

Thus the GDD measures the daily average temperature but in
 way that reflects the extremes more sensitively. The base tem-
erature represents the physiological temperature below which
evelopment would be zero.

A day with a high and low of 30 and 15 ◦C and a base temper-
ture of 10 degrees would have a GDD value of 12.5 ◦C. Thus GDD
s a simple, single-dimensional summary for describing the plant’s
xposure to heat. While GDD is a simple heuristic, it is commonly
sed by horticulturists to estimate the stages of a plant’s growth.
s an example, the maturation of wheat corresponds to about 1600
DDs (Dolan et al., 2006). Thus GDD provides us with a simple low-
imension summary of temperature, allowing for comparison of
he thermal time available in different climatic zones.

While SI gives scientific insight into the moisture available for
lant growth, it says little directly about the heat available to the
rop. Thus to improve our model we can also include GDD, which
p until now has been used primarily in this context for tuning the
xplanatory variables (Potgieter et al., 2006). Like SI, GDD is a daily
alue, and hence can be treated similarly. Thus through the corre-
ations plotted in Fig. 6 we look at the time of season where GDD
s most correlated with yield. This figure tells us that an appropri-
te window would be the one bounded by days 50 through 160.
sing a cumulative average over the whole season, the explained
ariation in yield increases from 70.06% to 73.20%, with the short-
ned window performing similarly. As emphasized by others (see,
or instance, Potgieter et al., 2006), including GDD accounts for
he biophysical phenology of the crop as well as improves inter-

retability of the model. Hence while the prediction improvements
re minimal, the variable’s inclusion is an important step in the
evelopment of a crop yield model. In addition to averaging over
he whole season or a shorter window, we can also use principal
Fig. 6. Correlation of GDD and yield over time. Smoothed with lowess smoothing.
From  this we  see that a reduced window average may  be appropriate.

components as we  did for SI above. While using the first 4 principal
components only increases this to 76.48%, the additional 120 vari-
ables result in reduced cross-validation prediction performance,
hence we prefer using just the windowed average. We emphasize
that this is a user and case-specific choice, and for alternate pur-
poses different choices may  be preferred. The expanded LS model
(3) then becomes

yj,t = ˇ0,j + ˇ1,jt + ˇ2,jPC1j,t + · · · + ˇ5,jPC4j,t + ˇ6,jGDDj,t + �j,t,

(4)

where  GDDj,t is the windowed average of GDD in region j, year t. It is
worth noting that temperature is a component of SI; however, the
addition of GDD into the model improves both model fit and pre-
diction, thereby eliminating concerns about the deleterious effects
that collinearity between the two  covariates might introduce.

We  compare the previous models as well as those developed
later in the paper in Table 1, showing the features and perfor-
mance of each successive model. The traditional regression models
represented in Table 1, fitted for each region separately, ignore a
considerable amount of information. Specifically, because of the
close spatial proximity of the regions, considerable strength may be
gained by exploiting the correlation among regions. For instance,
use of neighbouring SI values can help stabilize predictions based
on SI values, since the latter come from a small set of regional
monitoring stations and hence can be fairly noisy. The amount
of borrowed strength can be considerable when the correlation
between stations is high. In addition, modelling all stations jointly
We see that while model 4 has the best fit to the data (R2 = . 73), the Bayesian model
gives the best prediction performance in terms of cross-validated root mean squared
error (in bushels per acre). Effective parameters is defined as tr(S), where ŷ = Sy, and
may be considered a measure of model complexity (Hastie et al., 2009).
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o yield accurate forecasts. This idea leads into our next section,
hich focuses on spatial models that look at all regions together in

 unified manner.

.3.  A context-specific spatial Bayesian approach

Classical regression methods rely on the assumption that
heir model residuals are uncorrelated. Indeed violation of that
ssumption can have very serious deleterious effects on parameter
stimates compared, for example, to violations of the assumption
hat those residuals have a Gaussian distribution (Day, 1965). In our
ase the residuals are most certainly spatially dependent and thus
he actual amount of information in the data can be much less than
he assumptions underlying (1) would suggest. The unwary analyst
ould then be led to make overconfident forecasts with parameter

stimates which vary considerably from one region to the next, yet
ave unduly small standard errors.

One work-around would model the regions separately. How-
ver, this wastes the benefits spatial dependence provides by
orrowing strength, telegraphing information across the regions
hrough the wires of correlation for the mutual improvement
f all their forecasts. This progression naturally leads us to

 Bayesian framework for handling this problem, one which
ointly models all regions simultaneously while accounting for
heir spatial dependence. Thus we move from the frequency
aradigm of classical statistics to the Bayesian paradigm of modern
tatistics.

These two paradigms, which tend to give similar inferences at
east for fairly large datasets, are very different in concept. Fre-
uentists see data as being generated by a system governed by
ome true but unknown parameters. They commonly seek to esti-
ate these true parameters well in some sense, for a variety of

nferential purposes such as forecasting. The central tenet of their
heory is repeated sampling—in the long run the parameters can be
stimated to arbitrarily high levels of precision if the system pro-
ucing the data were unperturbed. However, Bayesian statisticians
eject the notion of repeated sampling as a fundamental construct
n their theory, recognizing realistically that most systems cannot
emain unperturbed and pump out replicate data over an extended
equence of trials. Although their models involve uncertain param-
ters, these parameters like all uncertain objects such as future
ata values, are characterized by a probability distribution. Initially
hat distribution, called a prior, simply reflects the Bayesian’s own
nowledge. An abundance of such knowledge would mean a prior
oncentrated around a single point and a state of near certainty.
he information in the data adds to the state of knowledge through
he celebrated Bayes theorem. The latter relies on the likelihood
unction of the uncertain parameters which captures all the infor-

ation in the data. A likelihood tightly concentrated around a single
alue would mean the data has eliminated much of the uncertainty
bout the parameters. However generally, Bayes rule needs to be
pplied to get the combined effect of data and prior knowledge;
his yields the Bayesian’s updated prior, or the so-called posterior
istribution. Due to its adaptability and ease of use, Bayesian infer-
nce has become a prominent fixture in modern spatial statistics,
nd in particular the modelling of random spatio-temporal fields
Banerjee et al., 2004; Le and Zidek, 2006).

.3.1. Available prior information
Consider,  for example, the spatial structure discussed above.

ven before estimating the parameters in Eq. (3), we  expect param-
ters in adjacent regions to be similar. Thus we would be surprised

f the parameters relating GDD to yield had completely opposite
igns in two neighbouring regions. This reflects our prior beliefs
bout those parameters, namely that knowledge of one would
ell us something about the other. More simply, we  would see
t Meteorology 152 (2012) 223– 232

them  as stochastically dependent in the language of the probability
distribution that characterizes our beliefs about them. We  might
even have some idea of their approximate magnitudes. For instance,
a magnitude of 100 (bushels per acre/degree celsius) for the coeffi-
cients ˇ6,j for GDD would be completely untenable, since it would
mean that changing one cold day to a warm one (adding, say, 10
GDD over the entire cumulative season), would increase the yield
by roughly 10 bushels per acre. Thus even without formalizing
our beliefs in a prior distribution, loose bounds on parameters are
almost always apparent.

Application  of the Bayesian approach starts by characterizing
our beliefs about the parameters in the form of a prior distribution.
In the regression models introduced above, this would amount to
a joint prior distribution on each  ̌ to account for our belief in their
dependence (similarity) for adjoining regions. For simplicity, stack
all of the coefficients into a vector ˇ, the first 7 coefficients being for
all variables in region 1, the next 7 for region 2, and so on. Assuming
a Gaussian distribution as a convenient prior form, we can explicitly
write the prior as follows:

ˇ∼N(0,  ˙0 ⊗ g˝). (5)

By  using such a Kronecker structure, ˙0 models the correlation
within a given coefficient across space, while g  ̋ corresponds to
Zellner’s g-prior (Zellner, 1986) with  ̋ the 7 × 7 empirical covari-
ance between explanatory variables. As such, this choice of prior
fits within the empirical Bayes paradigm. While specifying the
coefficients (particularly the intercept) to have zero-mean seems
restrictive, we note that a priori it does not seem unreasonable to
assume that in the presence of full stress (signaling the complete
absence of water) the crop yield would be zero. We  now specify
˙0, the correlation between regions, as

˙0 = exp
(−D

�

)
, (6)

with  a slight abuse of notation where D is the matrix with element
(i, j) the Euclidean distance between regions i and j (as measured
from the center of the region). Here � is a parameter controlling
the rate of decay of correlation as distance increases. In this way,
� controls how spatially smooth the coefficients are, while g con-
trols how tight around zero the coefficients are. While we are not
convinced that wheat is planted in more than the southern section
of the three northern-most regions, including the region centers
rather than some more southerly geographic location is conserva-
tive, as the true geographic center is further removed from adjacent
regions, and therefore the correlation expressed through ˙0 is
decreased. Others have proposed more complex spatially-varying
models which rely on Markov chain Monte Carlo for inference
(e.g. Gelfand et al., 2003; Banerjee et al., 2004); however, our goal
of an online implementation restricts us to models with analytic
tractability.

While we suspect neighbouring regions to be similar, Fig. 2 high-
lights the differences between provinces. While one could include
an indicator variable to allow for provincial effects, accounting
for provincially-varying coefficients would involve a considerable
number of interaction terms. In fact, the varying irrigation and
technology policies in each province result in a sharp boundary
between provinces for several of the mean parameters. As such, it
is not entirely logical to use a stationary prior (Cressie, 1993) which
assigns correlation between regions solely based on distance with-
out any respect for political boundaries. As a result, we adjust our
prior distribution to have reduced correlation between regions in
different provinces. While the obvious approach is to scale down

the prior correlation between regions in different provinces with
a constant value, this may  lead to non-positive definiteness of
˙0; alternative methods which do not suffer from this problem
are therefore needed. We  accomplish this task by deforming the



L. Bornn, J.V. Zidek / Agricultural and Forest Meteorology 152 (2012) 223– 232 229

trend

p
M
o
a
i
a
S
b
i
t
t
e
m
g
a

2

n

y

Fig. 7. Coefficient surfaces for intercept, technology 

hysical space, in effect pushing neighbouring provinces apart.
otivated by Sampson and Guttorp (1992), this artificial distortion

f the space results in a stationary prior in the deformed space, yet
 nonstationary one in the original space. The distance d (measured
n degrees latitude/longitude) by which the provinces are pushed
part in the artificial space is selected through cross-validation.
earching over the integers from 1 to 10, we find d = 4 to give the
est prediction performance (CV RMSE of 5.35 vs. 5.39 for d = 0),

ntuitively meaning that Alberta and Manitoba are pushed respec-
ively west and east from Saskatchewan by 4 degrees longitude in
he artificial space. The end result is a reduction in the off-diagonal
lements of ˙0 corresponding to between-province regions while
aintaining positive definiteness. Note that the prior parameters �,

,  and d result in an additional 3 parameters in the Bayesian model,
s reflected in Table 1.

.3.2.  Likelihood and posterior distributions
We begin by employing the likelihood corresponding to (4),

amely
j,t∼N(ˇ0,j + ˇ1,jt + ˇ2,jPC1j,t + · · · + ˇ5,jPC4j,t + ˇ6,jGDDj,t, �2).

(7)
, and PC1. Other coefficients are similarly smoothed.

In keeping with common practice, we  also assign an Inverse-
Gamma prior distribution on �2 with shape and scale parameters
a and b set to be highly noniformative. Before proceeding, we
introduce the notation y, the column vector of stacked yj, and X,
the (31 × 40) × 240 block-diagonal matrix of explanatory variables.
Using Bayes theorem to combine our initial knowledge (in the form
of prior distributions) and the information provided by the data (in
the form of the likelihood), we  can obtain the posterior distribution
of the parameters. Specifically, for the regression coefficients ˇ, the
marginal posterior is obtained using Bayes Theorem as follows:

�(ˇ|X,  y) ∝
∫

�(y|X, ˇ, ˙)�(ˇ|˙)�(˙)d˙. (8)

Due  to the conjugate nature of the prior and likelihood, we are able
to analytically complete this integral. The resulting distribution is
a multivariate Student-T,

ˇ∼T(ˇf , �, n + 2a) (9)

where  ˇf = (XT X + (˙0 ⊗ g˝)−1)−1(XT y), � = (XT X + (˙0 ⊗

g˝)−1)(SS + 2b)/(n + 2a), SS = yT y − ˇT

f (XT X + (˙0 ⊗ g˝)−1)ˇT
f .

From this last expression, we get the posterior mean ˇf, which
may be used as a simple estimator for ˇ. In fact, comparing
ˇf = (XTX + (˙0 ⊗ g˝)−1)−1(XTy) to the LS estimate (XTX)−1(XTy), we
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Fig. 8. Cross-validation errors using Bayesian posterior mean. For comparison, the
least squares error is 5.69. From this, we observe a ridge of excellent prediction.
Hence  there is some tradeoff between the two  parameters to be tuned.

Fig. 9. Cross-validation results by region. The Bayesian model improves prediction by al
well  as the breakdown to bias and variance for the models.
t Meteorology 152 (2012) 223– 232

readily see how the prior covariance affects the parameter esti-
mates. In particular, a diffuse prior distribution adjusts the estimate
little, whereas an informative prior distribution – one that is fairly
tightly concentrated around zero – shrinks the posterior estimate
considerably.

Setting g = 10 and � = 106, we  obtain coefficient estimates as
shown in Fig. 7, which also shows the corresponding least squares
estimate using (4). We  see that the spatial information used in
the Bayesian model causes the coefficients to be more correlated
across space. In addition, the zero-mean prior distribution leads
to some shrinkage in the coefficient estimates. Interestingly, we
notice little shrinkage in the estimated coefficient for technology
trend, suggesting that the data contains considerable information
on this quantity.

3.  Results

We  proceed by comparing the prediction performance of

the least squares and Bayesian methods. To accomplish this
we use leave-one-out cross-validation, removing years one at a
time in succession to compare each model’s predictive ability. More
specifically, we successively remove each year in turn, using the

l standards in the majority of regions. We plot root mean squared error (RMSE) as
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emaining years to find the posterior mean, notated ˆ̌ i
if year i is

emoved. This posterior mean is then used to perform prediction on
he removed year. From this the root mean squared error (RMSE)
s calculated as the square root of the sum of squared prediction
rrors for each year and region.

MSE =

√√√√ 31∑
i=1

40∑
j=1

(yi,j − Xi,j
ˆ̌ i

)2/(31 × 40). (10)

Fig. 8 shows the cross-validation root mean squared error
RMSE) of the posterior mean estimate for various settings of g
nd �. As g→ ∞ and � → 0, the Bayesian model converges to the
east squares solution, as evidenced by converging cross-validation
rrors. However, if g is too small, the prior on the regression coef-
cients is too informative towards zero, and hence the resulting
osterior means are overly shrunken, resulting in poor prediction
RMSE >6). While one could assign prior distributions to these
arameters, we prefer finding them through cross-validation for
omputational efficiency. Specifically, given the optimal parame-
ers, the model is conjugate, and hence sequential updating and
rediction is analytic and therefore nearly instant. It is very inter-
sting to note that the optimal prediction error for the Bayesian
odel is less than for the least squares model, indicating that pre-

iction is improved with regularization (provided by the zero-mean
rior and/or correlation). The area of lowest prediction error occurs
long a diagonal of g and � and has value approximately 5.35. This
s likely due to the fact that an increase in g results in a more dif-
use posterior which regularizes less, while increases in � result
n increased correlation between regions and hence more regular-
zation. Hence the optimal prediction seems to occur for moderate
mounts of regularization.

The  cross-validation RMSE can also be calculated for each region
y summing only over years. In this way we can gain an improved
erspective on the model’s prediction performance. However,
hile cross-validation RMSE gives an idea of the prediction per-

ormance of a model, it does little to tell of a model’s bias. To do
his we decompose the RMSE into the model’s prediction bias and
ariance. Doing this for each region, we obtain Fig. 9 detailing the
rediction RMSE, bias, and variance of the Bayesian and LS models

n each region. From this figure we observe that, with the excep-
ion of one or two individual regions, the Bayesian model improves
MSE in all areas except for southern Manitoba. Digging deeper,
e see a negative bias in this area. Thus the regularization of the
odel is perhaps not useful in this region due to some systematic

ifferences in this area. Specifically, this section of southern Mani-
oba is known to use significant irrigation (Gaia Consulting Limited,
007). As a result, further model development might be explored

n this area to account for irrigation.

. Conclusion

In this paper we have examined the role of SI in predicting crop
ields, emphasizing the need to create a judicious low-dimensional
ummary in order to improve prediction. Simply averaging SI over
he entire season is inefficient, as yield may  be insensitive to stress
n certain parts of the summer. The traditional solution to this prob-
em is to average over a reduced window of data, hence cutting out
hose areas lacking in sensitivity from the analysis. However, this
ne-dimensional feature is not particularly sensitive to changes in
tress indices within that window. For example, a region which has
ow SI in June but high SI in July might ultimately have the same

veraged value as another region which had just the opposite trend.
o address this issue, we have implemented principal components
nalysis to create a set of flexible summary statistics which better
escribe the variations in SI, and as a result improve prediction
t Meteorology 152 (2012) 223– 232 231

considerably. We  also demonstrated principal components’
improved performance over wavelet bases.

We have also shown the importance of incorporating spatial
correlation into crop yield models; ignoring this information can
lead to bias both in model identification and prediction. Specifi-
cally, we  observed that a common least squares fit of crop yield on
some explanatory variables over the entire region resulted in biased
residual errors, and hence violated the assumptions of the model.
To avoid this problem, we  could fit each agricultural region with its
own model. The problem, however, is that this ignores information
between crop regions, and as such we observed reduced prediction
power and model identifiability. We  addressed this issue through
the use of a Bayesian model which modelled all regions together,
yet accounted for spatial correlation. This model smooths and stabi-
lizes prediction and also allows for analytic and therefore efficient
updating and prediction. In addition, we  created a non-stationary
prior distribution to address the issue of province to province
variability resulting from provincial differences in policy, manage-
ment, and other factors affecting yield. Through cross-validation,
we demonstrated this model to achieve improved prediction per-
formance in modelling Canadian wheat yield over the least squares
model which ignores spatial dependence, and hope that others will
attempt to replicate our findings in other contexts based on the
promise seen in this application.
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