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Bayesian clustering in decomposable graphs

Luke Bornn∗ and François Caron†

Abstract. In this paper we propose a class of prior distributions on decompos-
able graphs, allowing for improved modeling flexibility. While existing methods
solely penalize the number of edges, the proposed work empowers practitioners to
control clustering, level of separation, and other features of the graph. Emphasis
is placed on a particular prior distribution which derives its motivation from the
class of product partition models; the properties of this prior relative to existing
priors are examined through theory and simulation. We then demonstrate the
use of graphical models in the field of agriculture, showing how the proposed prior
distribution alleviates the inflexibility of previous approaches in properly modeling
the interactions between the yield of different crop varieties. Lastly, we explore
American voting data, comparing the voting patterns amongst the states over the
last century.

Keywords: decomposable graphs, Bayesian analysis, product partition models,
agriculture, clustering, American voting

1 Introduction

This paper is concerned with the inference of the conditional independence graph G
of a multivariate random vector Y of dimension n, a problem sometimes referred to as
structure learning. We focus here on undirected decomposable graphs, whose popularity
is mainly due to the tractable factorization they allow for the likelihood (Dawid and
Lauritzen 1993; Lauritzen 1996); related work for directed graphical models can be found
in Koller and Friedman (2009). Learning the conditional independence graph G is an
onerous task due to the large number of graphs on a set of n nodes, or variables. It is
possible using optimization methods to find the graph which best fits the data according
to some metric (Meinshausen and Buhlmann 2006; Yuan and Lin 2007; Friedman et al.
2008); alternatively Bayesian model averaging may be used to accommodate uncertainty
in the estimated graph, or maximum a posteriori estimation may be used to select a given
model from the posterior over graphs. Such an approach relies on a prior distribution
π(G) over the set of decomposable graphs of a given size; through Bayes theorem, this
prior is updated based on the data to give an a posteriori estimate of the distribution
over graphs.

Current approaches have been limited in their ability to accommodate varying forms
of prior information on the graph. For instance, in an effort to encourage interpretable
graphs, the standard approach has been to penalize the number of edges (conditional
dependencies) in the graph. However, many situations exist where one might expect
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variables to be clustered together and the graph to exhibit block structure. At the
moment no such prior distribution exists to handle this problem. Our contribution
in this article is to propose a class of prior distributions motivated from the class of
product partition models which will allow improved flexibility in the specification of
prior information on the graph.

The field of agriculture is particularly suitable to the application of graphical models.
Due to large spatial domains as well as multifarious crop varieties, it is valuable to have
models which both handle the complexity of the biophysical process as well as allow
straightforward interpretation. In particular, one might examine the set of zero/non-
zero correlations between crop varieties’ yields, using the presence or absence of edges
to make decisions regarding crop management, marketing, and insurance policies. In
addition, due to small sample sizes in many agricultural applications, the choice of prior
distribution becomes particularly important.

2 Bayesian Inference on Decomposable Graphs

We begin with a brief overview of graphical models, following the exposition in Dawid
and Lauritzen (1993); see also Lauritzen (1996) for further details on graphical models.
Let G = (V,E) be a graphical model with vertices V = {1, . . . , n} and pairwise edges
E. The pair of nodes {i, j} ∈ V are adjacent if (i, j) ∈ E, and a subset C ⊂ V is said
to be complete if all its elements are adjacent to each other. A complete subgraph that
is maximal (i.e. not contained within another complete subgraph) is called a clique.
An ordering of the cliques of an undirected graph, (C1, . . . , Cnc) is said to be perfect if
the vertices of each clique Ci also contained in any previous clique C1, . . . , Ci−1 are all
members of one previous clique; that is, for i = 2, 3, . . . , nc

Hi = Ci ∩ ∪i−1
j=1Cj ⊆ Ch

for some h ∈ {1, 2, . . . , i− 1}. The sets Hi, i = 1, . . . , nc − 1 are called separators. We
write S1, . . . , Sns

the non-empty separators (some might appear multiple times). If an
undirected graph admits a perfect ordering it is said to be decomposable.

We associate to each vertex i a random variable Yi. For A ⊆ V , let YA = {Yi|i ∈ A}.
A distribution P over V is Markov with respect to G if, for any decomposition (A,B)
of G, XA is independent of XB given XA∩B . The widespread use of decomposable
models is due to the resulting factorization of densities. Specifically, if P satisfies the
conditional independencies implied by a decomposable graph G, then the likelihood of
the graphical model specified by P can be factorized according to the graph’s cliques
and separators

p(y|G, θ) =
∏nc

i=1 p(yCi
|θCi

)∏ns

j=1 p(ySj
|θSj

)
(1)

where θ is a quantity parameterizing the graphical model P over the graph G and
satisfying some consistency conditions with respect to G (Dawid and Lauritzen 1993).

Traditionally, focus has been on Gaussian graphical models, also known as covariance
selection models (Dempster 1972) where P = Nn(µ,Σ) is an n-dimensional multivariate
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Gaussian distribution and θ is the n×n covariance matrix Σ. Conditional independence
structure is represented by the precision matrix Σ−1. If the edge (i, j) /∈ E, then the
variables Yi and Yj are conditionally independent given the remaining variables, and
Σ−1

(i,j) = Σ−1
(j,i) = 0. As such, the Gaussian graphical model may be factorized as (1)

with the covariance Σ replacing θ, and the corresponding likelihood terms written as

p(yB |ΣB) = (2π)−|B|/2 det(ΣB)−|B|/2 exp[−1
2
tr(SB(ΣB)−1)] (2)

for each complete set B, where |B| denotes the cardinality of B and SB is the empirical
covariance matrix of yB .

From a Bayesian perspective, we are interested in the posterior distribution
p(θ,G|y) ∝ p(y|θ,G)p(θ|G)π(G). Much work has been dedicated to specifying proper pri-
ors p(θ|G), (see Giudici and Green 1999; Dawid and Lauritzen 1993). The main focus
of this paper is the specification of a prior distribution π(G) over the space of decom-
posable graphs. As this space is very large compared to the number of observations, it
is crucial to add as much prior information as possible on the structure of the unknown
graph G. Moreover, we are generally interested in obtaining sparse graph estimates for
needs of interpretation and prediction. Up until now, the specification of π(G) has been
limited to the uniform distribution, or priors which penalize the complexity as measured
by the number of edges. This brings us to the focus of this work, namely a class of prior
distributions π(G) which subsumes control over the structure and features of G.

3 Priors on Decomposable Graphs

3.1 Previous work

While early work on inference in decomposable models often assumed a uniform prior
over graphs (Giudici and Green 1999), such priors put considerable mass on models of
intermediate size. In an effort to put more weight on smaller graphs, several authors
have proposed using a binomial prior distribution with parameter ρ on the number of
edges r in the graph. This yields priors of the type (Dobra et al. 2004; Jones et al. 2005)

π(G) ∝ ρr(1− ρ)m−r (3)

where m = n(n−1)
2 is the maximal number of possible edges on n nodes. When ρ = 1/2,

it reduces to the aforementioned uniform prior over graphs. Jones et al. (2005) suggest
the use of ρ = 2/(n − 1), motivated from the resulting density’s peak at n edges in
the unconstrained graph. Some authors also consider adding a hierarchical Beta prior
ρ ∼ Be(a, b) (Carvalho and Scott 2009), giving the marginal prior on the graph as

π(G) =
∫ 1

0

π(G|ρ)π(ρ)dρ ∝ β(a+ k, b+m− k)
β(a, b)
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where β(·, ·) is the beta function. Carvalho and Scott (2009) suggest a default choice of
a = b = 1, implying a uniform prior on ρ. Interestingly, the resulting prior on G is

π(G) =
1

m+ 1

(
m

r

)−1

,

which penalizes medium-sized graphs as desired. Such a prior weights each graph ac-
cording to the number of graphs in the unrestricted space with the same number of
edges. However, as shown by Armstrong et al. (2009), the space of decomposable graphs
can be considerably different than the unrestricted space. To address this, Armstrong
et al. (2009) have proposed a uniform prior on decomposable graphs given the number
of edges. However, calculating the number of decomposable graphs of a given size is
an arduous task: there exists no list in the literature of decomposable graphs and their
breakdown in terms of number of edges, nor are there straightforward ways of comput-
ing such quantities. As a result, Armstrong et al. (2009) propose an MCMC estimation
scheme, testing its accuracy up to 12 nodes, although such a scheme will likely become
prohibitive in higher dimensions.

While the priors in the above references allow one to control the size of the result-
ing graphs through the number of edges, often doing so results in undesirable graph
structures, namely those with a high number of separators and long strings of nodes.
Figure 1(top) shows random samples from a binomial prior over 20-node graphs with
ρ = 0.1 (closely echoing the choice of Jones et al. (2005), namely ρ = 2/(n− 1) ≈ 0.1)
and ρ = 0.5 (the uniform prior). We see from this plot that there is no clustering of
the cliques, making interpretation difficult. In addition, the long strings/trees seen for
ρ = 0.1 do not mesh with reality in most cases. Clearly such a class of priors is not
suitable if one suspects clustering amongst the variables, clique sizes to be upper (or
lower) bounded, or nearly full separation between cliques. Our focus therefore is on
moving beyond priors which focus on the number of edges to priors which focus on
graph (clique and separator) structure.

3.2 A new prior distribution on decomposable graphs

Motivated from the class of product partition models (Hartigan 1990; Barry and Har-
tigan 1992, 1993), we consider prior distributions of the form

π(G) ∝
∏nc

j=1 ψC(Cj)∏ns

j=1 ψS(Sj)
(4)

where ψC and ψS are respectively called the clique/separator cohesion functions, with
the convention that ψS(∅) = 1. Evidently one could choose to penalize only cliques
or separators by setting ψC or ψS to constant values. Alternatively, one could simply
penalize clique sizes by setting ψC = a|C|. Motivated from the class of product partition
models, consider the cohesion functions ψC(B) = a(|B| − 1)! and ψS(B) = 1

b (|B| − 1)!,
a > 0, b > 0, hence

π(G) ∝ ancbns

∏nc

j=1(|Cj | − 1)!∏ns

j=1(|Sj | − 1)!
. (5)
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Clique Sizes: 2(17), 1(2)
Separator Sizes: 1(11)

Clique Sizes: 2(14), 1(4)
Separator Sizes: 1(6)

Clique Sizes: 9, 8, 6, 3
Separator Sizes: 6

Clique Sizes: 9, 6, 3, 2
Separator Sizes: N/A

Clique Sizes: 10, 5, 4, 1
Separator Sizes: N/A

Clique Sizes: 5(2), 4, 3, 2, 1
Separator Sizes: N/A

Clique Sizes: 6, 2(2), 1(10)
Separator Sizes: N/A

Clique Sizes: 4, 3(2), 2 (3), 1(3)
Separator Sizes: N/A

Clique Sizes: 7, 3(2), 1(8)
Separator Sizes: 1

Clique Sizes: 4, 3, 2(3), 1(7)
Separator Sizes: N/A

Clique Sizes: 8(2), 7(3), 6(4), 5(2), 4(2)
Separator Sizes: 7, 6(3), 5(4), 4(2), 3(2)

Clique Sizes: 8, 7(3), 6(5), 5(3), 4
Separator Sizes: 6(3), 5(5), 4(3), 3

Clique Sizes: 8(3), 7, 6(5), 5(3), 4
Separator Sizes: 7(2), 6, 5(5), 4(3), 3

Clique Sizes: 10, 9(4), 7(4), 4(2)
Separator Sizes: 8(4), 6(4), 3(2) 

Clique Sizes: 2(14), 3(2), 1
Separator Sizes: 1(9)

Clique Sizes: 3, 2(8),1(5)
Separator Sizes: 1(4)

Figure 1: Four random samples from binomial and product graphical model (PGM)
priors. Clique and separator sizes for each graph are also shown (“Clique Sizes: 2(3)”
implies 3 cliques of size 2). 4 million samples were generated using Markov chain Monte
Carlo, and every millionth is shown. While the binomial is characterized by large strings
and many separators, the product graphical model allows one to induce clustering by
setting b small.

The factorial terms result in predilection towards large cliques and small separators – a
desirable trait in terms of interpretability of the resulting graph. For instance, even if
a = b = 1 with 20 nodes, the completely connected graph would be preferred over the
complete independence graph by a factor of 20!. The parameters a and b respectively
tune the number of cliques and separators in the decomposable graph. For a small,
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the prior will favour a small number of large cliques. Likewise for b, with small values
favouring fewer separators. Figure 1 (bottom) shows samples from this prior. Because of
its relation to product partition models (described later), we term this prior the product
graphical model prior. To clearly demonstrate the control the product graphical model
prior (5) gives relative to the binomial prior, we set b = 1/1000, highly penalizing the
number of separators and hence resulting in highly separated cliques. In addition, we
look at two different values for a; a = 0.1, resulting in fewer and larger cliques, and
a = 10, resulting in more (but smaller) cliques. Fig. 1 demonstrates the ability of the
prior to induce clustering of the cliques, and therefore sparsity in correlation.

We have seen some general properties of the prior (5), namely the ability to control
the number of cliques and separators. Figure 2 shows log10(π(G)/π(G′))) for different

Figure 2: Log ratio of priors over two graphs for product graphical model prior for
various a, b (solid, bottom axis) and binomial prior for various ρ (dashed, top axis).
While the binomial prior allows one to control the number of edges, for instance choosing
G1 over G2, the same parameter would seldom choose G3 over G4, despite G3 having a
sparse covariance matrix, and G4 having a saturated covariance matrix.

graphs G,G′. Specifically, decreases in b result in increased prior probability on models
with few separators; in addition we see that as a is increased, more mass is put on models
with many cliques. In contrast, we also plot the same ratio for the binomial prior (3).
From this one can see the limited control such a prior gives, favouring small models in
terms of number of edges, but putting very little mass on models, for example, which
feature clusters of fully-connected nodes (as in G3) and therefore have sparse covariance
matrices.

Selecting the appropriate cohesion functions in equation (4) is a difficult problem,
but one for which we may gain insight from the existing literature on product partition
models (Crowley 1997; Quintana and Iglesias 2003; Quintana 2006). For instance, one
may use Figure 2 to select a and b to best fit with prior intuition regarding the features
of the graph, then verify the choice through generation of Monte Carlo samples from
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the prior as in Figure 1. Alternatively, cross-validation or related methods may be used
to select a and b; due to the potential computational cost of such methods, sequential
Monte Carlo approaches may be used to speed up prior distribution selection (Bornn
et al. 2010).

Given that the likelihood decomposes as (1) and the prior is of the form (4), the
posterior will also be of the form (4) with cohesions ψC(Cj)p(yCj

) and ψS(Sj)p(ySj
).

The prior admits several other attractive properties and connections with well-known
clustering methods as well. If ψS(Sj)→∞ for all Sj 6= ∅, then Equation (4) reduces to

π(G) ∝
nc∏

j=1

ψC(Cj)

if ns = 0 and 0 otherwise. The resulting prior puts only positive mass on graphs with
no separators. It has been introduced as a prior over partitions by Hartigan (1990) and
Barry and Hartigan (1992, 1993) under the name of product partition models. In the
particular case of (4) with b→ 0, the prior over G reduces to

π(G) =
ancΓ(a)
Γ(a+ n)

nc∏
j=1

(|Cj | − 1)!

As shown by Quintana and Iglesias (2003) (see also Quintana 2006), this is the distri-
bution over partitions induced by a Dirichlet Process (Ferguson 1973; Antoniak 1974).
We also have

E(nc) =
n−1∑
i=0

a

a+ i
' alog(1 + n/a) + γ, var(nc) =

n−1∑
i=1

ai

(a+ i)2

where γ is Euler’s constant and

pr(nc = k) = s(n, k)akΓ(a)/Γ(a+ n)

where the coefficients s(n, k) are the absolute values of Stirling numbers of the first kind
(Antoniak 1974). In this limiting case, the number of cliques increases logarithmically
with the number of nodes.

3.3 Extensions

Motivated by the larger class of exchangeable partition functions (Pitman 1995; Lau
and Green 2007), we can also consider four-parameters models, allowing more control
over the relative sizes of the cliques/separators

π(G) ∝
∏nc

j=1(a2 + a1(j − 1))Γ(|Cj |−a1)
Γ(1−a1)∏ns

j=1(b2 + b1(j − 1))Γ(|Sj |−b1)
Γ(1−b1)
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where a2 > −a1, 0 ≤ a1 < 1, likewise for b1, b2. The above model reduces to (5)
when a1 = b1 = 0. We can also consider models that control the maximal number of
cliques/separators

π(G) ∝
∏nc

j=1(c1 − j + 1)Γ(c2+|Cj |)
Γ(c2)∏ns

j=1(d1 − j + 1)Γ(d2+|Cj |)
Γ(d2)

where c1, c2, d1, d2 > 0, and c1 > d1 are the maximal number of cliques/separators.
These two models respectively admit as limiting cases the distribution over partitions
induced by the two-parameter Poisson-Dirichlet distribution and the finite Dirichlet-
multinomial distribution, (see Lau and Green (2007) for further details on these dis-
tributions). Using such extensions, one is able to both extend the product graphical
model prior to control relative sizes and the maximal number of cliques and separators,
as well as borrow from the wealth of literature on Dirichlet and related distributions to
gain insight into the prior distribution’s characteristics.

4 Example: Modeling Agricultural Output of Different
Species

Determining agricultural policies to govern crop production, harvesting, and export is a
challenge fraught with high variability both temporally and spatially. Enabling effective
crop management, handling, and marketing thus requires accurate understanding of crop
yield, which accounts for and explains these variations. While much effort has been made
in developing models for predicting single crops (Potgieter et al. 2006; Bornn and Zidek
2010), little effort has been made in understanding statistically the relationship between
crop yield of different crop varieties.

Understanding the connection between yields of different crop varieties is valuable
for a multitude of reasons. Firstly, because certain crops are planted and harvested at
different times, the management of one crop might benefit from knowledge obtained from
harvesting a similar crop earlier in the year. Additionally, by accounting for correlation
between different crops, insurers might better cover themselves against extreme events
and better control insurance rates for farmers. Lastly, farmers themselves might wish
to ensure some level of stability in their income, and therefore might prefer to plant
crops which are uncorrelated in yield. Through such a practice, a farmer would be
proactive in preventing disasters across his entire crop portfolio. Simply by looking at
the resulting undirected graph, a farmer could select two crops which do not have a
path connecting them, and are therefore uncorrelated.

We examine the total production (in thousands of bushels) of 24 crops in the state
of California from the years 1990 to 2009 (20 years). The data is compiled from the
U.S Department of Agriculture website, where a considerable database is available for
viewing and analysis. The 24 crops include, for example, several varieties of wheat,
rice, and beans. We use the now-standard Gaussian hyper-inverse Wishart model: the
likelihood of yield is given in (1) and (2), and the prior for the covariance matrix Σ is
hyper-inverse Wishart, which factorizes similarly to (1), as a ratio of inverse Wishart
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distributions over cliques and separators (Giudici and Tarantola 1996). See Carvalho
and Scott (2009) for some alternative marginal likelihoods based on fractional Bayes
factors which can help to induce parsimony. The parameters chosen for the hyper-
inverse Wishart distribution are as described in Jones et al. (2005); we focus on the
specification of π(G). Looking at the list of crops, one would expect that there will
be clustering of the yields according to crop characteristics. For instance, it would
be reasonable to expect the yield of beans to be correlated with each other. We also
seek an interpretable graph, namely one with small complexity (in terms of number
of edges and/or separators). The first such prior we examine is the binomial prior of
Jones et al. (2005) with ρ = 2/(n − 1), chosen due to its prevalence in the literature.
While such a prior allows for penalization on the number of edges, no control is available
over clustering. In contrast, by using the prior (5), we can set b = .01 to put strong
penalization on the number of separators (and hence induce separation of the cliques
and therefore sparsity in the correlation matrix), and set a = .01 to encourage a small
number of cliques in the pursuit of simplicity in the resulting graph.

We run MCMC of length 10 million over the space of decomposable graphs (Giudici
and Green 1999) for both the binomial and product graphical model priors, thinning
to every 100 samples. With both priors, one may save computational resources by
making local moves, merging and splitting cliques within the Markov chain. As a
result, one need not re-determine the structure of the entire graph at each move. Figure
3 shows the 4 graphs with highest posterior probabilities from each prior. The product
graphical model prior results in the top 4 graphs having posterior density values in
the range 0.11 to 0.49, whereas for the binomial the range is 0.04 to 0.06, indicating
that the binomial prior spreads mass much more evenly across distributions relative to
the product graphical model prior with a = b = 0.01. Immediately evident from the
figure is the different forms resulting from each prior. Specifically, the binomial prior
induces long strings of nodes with many separators, whereas the product graphical
model posterior reflects our prior beliefs that variables will cluster together, resulting
in sparsity in the correlations between variables. A commercial farmer desiring to plant
two plots with uncorrelated crops to minimize the risk of loss might reach quite different
conclusions from each prior. Specifically, the large strings of nodes from the binomial
prior suggest correlation between the majority of crops. The farmer might not plant
winter wheat (planted in late fall) and a strain of beans (harvested in early fall) on
his two plots, despite their very different growing seasons, due to their connection in
two of the highest posterior probability graphs in Figure 3. In contrast, the separation
of cliques from the product graphical model prior (5) would allow these crops to be
planted together. Such decisions could be made from the highest posterior graph, or by
conducting Bayesian model averaging to obtain the expected utility of a given decision.

To gain an understanding of the product graphical model prior’s prediction perfor-
mance, we split the data into a training set (first 12 years) and testing set (last 8 years).
After simulating from the posterior distribution arising from the binomial and product
graphical model priors, we use Bayesian model averaging via the marginal likelihood
evaluated on the test data to judge the model’s prediction performance. We evaluate the
resulting posterior predictive evaluated on the test set in Table 1; indeed, the product
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21: potatoes (spring)   22: potatoes (summer)   23: potatoes (fall)   24: sweet potatoes

Figure 3: Four samples with highest posterior probability from crop yield model using
binomial and product graphical model (PGM) priors. We see the bean yields (nodes
12 through 17) seem to cluster together, as do summer and fall potatoes (nodes 22 and
23). We also observe that the product graphical model prior induces separated cliques,
whereas the binomial prior results in long strings and trees of connected variables. As a
result, the product graphical model prior will induce sparsity in the resulting posterior
covariance.

graphical model prior provides better prediction in this example, even over a variety of
parameter choices. We also show the number of edges for each model, indicating that
sparsity in terms of edges alone is not responsible for the improved prediction.

5 Example: Modeling 20th Century American Voting
Patterns

In an effort to demonstrate the product graphical model prior in higher dimensions, we
now turn to the modeling of American voting data by state. For each federal election
from 1904 to 1976, occurring every four years, we measure the proportion of votes for the
Republican party in each of the 50 states (Carr 2005). Our goal is to model and visualize
correlation in voting pattern changes over the last century. Some immediate questions
come to mind: “Do certain states have an important role in determining election out-
comes?”, “Are there groups of states which vote together, operating independently from
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Table 1: Log predictive density evaluated on test data using various priors
Distribution: Binomial PGM
Parameters: 2/(24− 1) 0.5 (0.01, 0.01) (0.1, 0.1) (1, 1)
Avg. Log Predictive: −688 −707 −675 −677 −686
Avg. Number of Edges: 17.8 29.6 18.1 16.4 20.3

the US as a whole?”

We proceed by exploring the posterior distribution resulting from the binomial prior
with edge probability 0.1, and the product graphical model prior with parameters
a = 10, b = 10−3, in an effort to make the overall number of edges resulting from
each model comparable. Figure 4 shows the two graphs with highest posterior density
from each model. As expected, the binomial graphs contain long strings of variables,
while the product graphical model prior demonstrates clustering and grouping of vari-
ables. While the binomial prior results in similar variables placed along the same string,
the grouping from the product graphical model allows for clearer interpretation. For
instance, we immediately observe that the southern states (SC, MS, LA, AL, GA, TX,
VA, FL) generally vote in a group. Other patterns of interest also arise, including a close
connection between AR, NC, and TN. Also, notice that NY and KS are consistently the
single node connecting clusters of variables. As such, these states might be considered
key indicators of voting behavior.

6 Discussion

While we have focused on the Bayesian approach to covariance selection, significant
work has also been done in a non-Bayesian framework. A common approach involves
placing an `1 penalization on the precision matrix Σ−1, which leads to sparse estimates
(Meinshausen and Buhlmann 2006; Yuan and Lin 2007; Friedman et al. 2008). Closer
to the heart of this paper, Marlin and Murphy (2009) examine the case of estimating
G when clustering is expected, and therefore Σ−1 exhibits block structure. However,
these models are neither decomposable nor generative.

While we have focused in this article on Gaussian graphical models, the prior defined
in this article is far more general and can be used with any type of model for handling
discrete or mixed data (see Madigan and York 1995; Lauritzen 1996). We have also
considered the hyperparameters a and b to be known constants. Estimating them within
the MCMC sampler would require one to compute the normalizing constant in (5), which
is in general not tractable. An exception of interest is the case b → 0, where we can
assign a gamma prior to a and use the data augmentation algorithm described in West
(1992) to update a given the other variables.

In conclusion, the proposed product graphical model prior improves flexibility in
modeling decomposable graphical models and borrows strength from the immense lit-
erature on product partition and related models. The product graphical model prior
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Figure 4: Voting example: two graphs with highest posterior density (HPD) from bino-
mial and product graphical model priors.

allows one to encourage (or discourage) clustering of the graphs, and therefore can
induce sparsity in the correlation matrix through clique separation; consequently, the
product graphical model empowers practitioners to encapsulate their true prior beliefs
to build a model more attuned to the problem at hand.
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