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In this article, we propose a novel approach to modeling nonstationary spatial fields. The proposed method works by expanding the geographic
plane over which these processes evolve into higher-dimensional spaces, transforming and clarifying complex patterns in the physical plane.
By combining aspects of multidimensional scaling, group lasso, and latent variable models, a dimensionally sparse projection is found in
which the originally nonstationary field exhibits stationarity. Following a comparison with existing methods in a simulated environment,
dimension expansion is studied on a classic test-bed dataset historically used to study nonstationary models. Following this, we explore the
use of dimension expansion in modeling air pollution in the United Kingdom, a process known to be strongly influenced by rural/urban
effects, amongst others, which gives rise to a nonstationary field.

KEY WORDS: Dimension expansion; Environmental processes; Nonstationary modeling; Spatial statistics.

1. INTRODUCTION

Recently, there has been great interest in using spatial statis-
tical methods to model environmental processes, with the aim
of both gaining an improved understanding of underlying pro-
cesses and making predictions at locations where measurements
of a process are not available. The majority of such methods
make the assumption that the underlying process is stationary
(Cressie 1993) which, for many environmental systems, may be
untenable.

In this article, we focus on accurately explicating the non-
stationary structure that often arises in measurements of atmo-
spheric, agricultural, and other environmental systems. If these
systems share one underlying theme it is complex spatial struc-
tures, being influenced by such features as topography, weather,
and other environmental factors. For example, the air quality
characteristics of cities are likely to be more similar than that
of rural areas irrespective of their geographic proximity. Ideally
we might model these effects directly; however, information on
the underlying causes is often not routinely available. Hence,
when modeling environmental systems there exists a need for a
class of models that are more complex than those which rely on
the assumption of stationarity.

In the field of atmospheric science, empirical orthogonal func-
tions have been used to model a nonstationary process as the
sum of a stationary isotropic process and a set of basis func-
tions with random coefficients representing departures from
nonstationarity (Nychka and Saltzman 1998; Nychka, Wikle,
and Royle 2002). Current approaches to modeling nonstation-
ary processes in the statistical literature broadly comprise those
that (1) combine locally stationary processes to create an overall
nonstationary process and (2) “image warping.”

A number of approaches for handling nonstationarity assume
that over small enough spatial domains, the effects of nonsta-
tionarity are negligible, and hence locally stationary models
may be used. This concept is the basis of kernel approaches,
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early examples of which can be found in Haas (1990a,b). The
process–convolution approach (Higdon 1998; Higdon, Swall,
and Kern 1999) relies on the notion that a wide range of station-
ary Gaussian processes may be expressed as a kernel convolved
with a Gaussian white noise process, with the kernel being al-
lowed to vary spatially to account for nonstationarity. The form
of the kernel allows for a broad expression of potential co-
variance functions, with a Gaussian kernel corresponding to a
Gaussian covariance function and other choices of kernel re-
sulting in other correlation structures. Similarly, Fuentes (2001)
suggested modeling the field as a weighted average of local
stationary processes within a set of regions, an idea which was
later extended to include a continuous convolution of stationary
processes (Fuentes and Smith 2001). Various difficulties still
remain in this class of models, including the lack of a com-
plete and easily interpretable global model and the choice of
local regions and details of the weight structures. An alternative
approach proposed by Sampson and Guttorp (1992) is that of
“image warping,” the central idea of which is that a nonsta-
tionary process may be stationary in a deformed, or warped,
version of geographic space. Multidimensional scaling (or re-
lated methods) can be used to find the deformed locations with a
mapping between the original and deformed space found using,
for example, a thin-plate spline.

The principal idea underlying the proposed method is that
of embedding the original field in a space of higher dimension
where it can be more straightforwardly described and modeled.
Specifically, we shift the dimensionality of the problem from 2
or 3 dimensions to 4, 5, or more to recover stationarity in the
process; we term our methodology “dimension expansion.” Our
starting point is that nonstationary systems may be represented
as low-dimensional projections of high-dimensional stationary
systems (see, e.g., Perrin and Meiring 2003). The method is
superficially similar to that of image warping; however, it differs
fundamentally in that here the locations in the geographic space
are retained, with added flexibility obtained through the extra
dimensions. In addition, it addresses one of the major issues
with the image warping approach, namely folding of the space.
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This occurs in image warping if the estimate of the function that
transforms from geographical to deformed space is not injective.
As a result of folding, two geographically distinct locations may
be mapped to the same location, meaning the variation between
them will be incorrectly treated as measurement error and small
scale variation (i.e., the nugget), which is expressly appropriate
only for collocated and other proximal monitoring sites. In such
cases, mapping quantities such as prediction intervals becomes
particularly challenging both in terms of implementation and
interpretation.

The remainder of the article is organized as follows: Section 2
introduces the dimension expansion framework proposed here,
including an illustrative example to demonstrate the fundamen-
tal concepts behind the approach. This example is then used
to draw comparisons to image warping. In Section 3, dimen-
sion expansion is applied to two real-life examples. First, the
solar radiation dataset originally used in Sampson and Guttorp
(1992) and used as a test-bed in various more recent image warp-
ing articles is studied. Second, we study air pollution from 77
monitoring locations in the United Kingdom which show clear
signs of nonstationarity. We highlight the ability of dimension
expansion to accurately model such data as measured through
cross-validated prediction error. Finally, Section 4 provides a
discussion and suggestions for future developments.

2. DIMENSION EXPANSION

While an early work dealt primarily with stationary models
(e.g. Cressie 1993), it is now generally recognized that many
spatial processes {Y (x) : x ∈ S}, (S ∈ Rd ) fail to satisfy this
assumption. Environmental systems might exhibit behavior that
looks locally stationary, yet when considered over large and het-
erogenous domains they very often exhibit nonstationarity. For
ease of notation, we consider Y (x) to be a (potentially nonsta-
tionary) mean-zero Gaussian process and place our emphasis
on representing the nonstationary structure.

A principal task in spatial statistics is estimating a variogram
model (or correlation function) to explain spatial dependencies.
The theoretical variogram, defined as

2γ (xi , xj ) = E(|Y (xi) − Y (xj )|2),

is typically modeled using a parametric stationary variogram
γφ(h) depending only on h = xi − xj , the difference vector be-
tween locations, and the parameter(s) φ. If the field is nonsta-
tionary, such a model will be a misspecification. In response,
we transform the set of observed spatial locations S ∈ Rd into
one of higher dimension S ′ ∈ Rd+p, where p > 0 and S is a
subset of the dimensions of S ′. Put plainly, such an approach
amounts to allowing extra dimensions for the observed locations
x1, . . . , xs , notated as z1, . . . , zs such that the field Y ([x, z]) is
stationary with a variogram model γφ([xi , zi] − [xj , zj ]). Here
[x, z] is the concatenation of the dimensions x and z.

Perrin and Meiring (2003) explored this idea in the particular
case where both the covariance function and the expansion from
x to [x, z] are known. In their motivating example, they consider
the following stationary covariance on the plane:

cov(Y ([xi , zi]), Y ([xj , zj ])) = exp(−|xi − xj | − |zi − zj |).

By restricting to the set z = x2 and defining Y ′(x) = Y ([x, x2]),
the resulting covariance function on this reduced-dimension
field is nonstationary, namely,

cov(Y ′(xi), Y ′(xj )) = exp(−|xi − xj |) exp(1 + |xi + xj |).

Perrin and Meiring (2003) then considered the reverse problem,
proving that a nonstationary random field indexed by Rd (with
moments of order greater than 2) can always be represented as
second-order stationary in R2d . It is not, however, necessary to
move from Rd to R2d to obtain the existence of a stationary
field. Consider a recent result of Perrin and Schlather (2007),
which stated that a Gaussian random vector can always be inter-
preted as a realization of a stationary field in Rp, p ≥ 2, subject
to moment constraints on the vector, namely, that all compo-
nents have equal expectation with the covariance matrix having
identical components on the diagonal. From this it is straightfor-
ward to state that, similarly, a realization of a Gaussian process
in Rd may be interpreted as a realization of a stationary field
in Rd+p, p ≥ 2 (similarly, subject to moment constraints), with
the covariance function ignoring the initial d dimensions.

The above results show the existence of higher-dimensional
stationary representations for nonstationary fields, yet in the vast
majority of situations neither a nonstationary variogram, nor an
analytic mapping to higher dimensions, is known. Here we con-
struct a framework for using higher-dimensional representations
to model nonstationary systems, with the goal of learning the la-
tent dimensions nonparametrically from information contained
within the data.

To learn the expanded, or latent, dimensions z1, . . . , zs we
propose

φ̂, Z = argmin
φ,Z′

∑

i<j

(v∗
i,j − γφ(di,j ([X, Z′])))2, (1)

where v∗
ij estimates the spatial dispersion between sites i and j,

for example,

v∗
ij = 1

|τ |
∑

τ

|Y (xi) − Y (xj )|2,

with τ > 1 indexing multiple observations of the system,
the handling of which is considered in the discussion, and
di,j ([X, Z]) is the i, j th element of the distance matrix of the
(augmented) locations [X, Z]. Once the matrix Z ∈ Rs × Rp is
found, a function f is built such that f (X) ≈ Z. While a wide
range of options exist, we follow Sampson and Guttorp (1992)
in using thin-plate splines, here one for each dimension of Z.
Thin-plate splines are a mapping from one space to another such
that the integral of the squared second-order derivatives of the
mapping function is minimized. For d = 2, this corresponds to
minimizing

s∑

i=1

||zi − f (xi)||2 + λ2

∫

R2

[(
∂2f

∂2x1

)2

+ 2
(

∂2f

∂x1∂x2

)2

+
(

∂2f

∂2x2

)2
]

dx1dx2,

and, therefore, the smoothing parameter λ2 is analogous to λIW,
the thin-plate spline parameter in the image warping frame-
work. Setting λ2 = 0 results in an interpolating spline, whereas
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Figure 1. Empirical variograms from the original process (left) as well as a two-dimensional projection (right) on the illustrative ellipsoid
example. A fitted exponential variogram is shown by the solid line. (The online version of this figure is in color.)

λ2 → ∞ results in the linear least squares fit. The nonlinear
functions f are therefore linear combinations of basis functions
centered at the locationsS ∈ Rd . Once a model is built in the ex-
panded space, f −1 will bring us from the manifold in Rd+p de-
fined by (X, f (X)), X ∈ Rd back to the original space.

Due to our unique formulation, we have f −1(Z) = X, and
we need not be concerned with the difficulties associated with
ensuring that f is bijective as in earlier approaches. Thus, we may
view the originally observed locations X as a projection from
a manifold within a higher-dimensional space, [X, Z], in which
the process is stationary. As an obvious (and direct) example,
a process which is stationary given both geographical location
and elevation may result in a nonstationary field given only
longitude and latitude. Learning the latent dimensions (whether
or not they have a physical meaning, such as elevation) means
that a stationary model may be used in the expanded space.

In many situations, it is unclear how many additional dimen-
sions are needed to accurately model the spatial field. One could
use cross-validation or a model selection technique to determine
the dimensionality of Z; however, recognizing that (1) might re-
sult in overfitting the spatial dispersions, we would also like to
regularize the estimation of Z. As a result, we modify (1) by
including a group lasso penalty term on Z, where the groups
are the dimensions of Z (Yuan and Lin 2006). The resulting
objective function is

φ̂, Z = argmin
φ,Z′

∑

i<j

(v∗
i,j − γφ(di,j ([X, Z′])))2

+ λ1

p∑

k=1

||Z′
·,k||1, (2)

where Z′
·,k is the kth column (dimension) of Z′. As a conse-

quence of this revised objection function, one need only deter-
mine a maximum number of dimensions p and the shrinkage
parameter λ1, whereupon the learned augmented dimensions
Z will be both regularized toward zero and sparse in dimen-
sion. Hence λ1 can be viewed as regularizing the estimation
of Z and determining the dimension of the problem, whereas
λ2 controls the smoothness of the augmented dimensions; we

suggest learning both through cross-validation, although other
model fit diagnostics or prior information may be used as well.

It is relatively straightforward to solve (2) using the gradi-
ent projection method of Kim, Kim, and Kim (2006), which
conducts blockwise updates for group lasso with general loss
functions. Here the blocks are the dimensions of Z, and hence
the optimization is efficient even for a large number of spatial
locations. Optimization details are given in the appendix. For
ease of exposition we use an exponential variogram,

γφ(x1, x2) = φ1(1 − exp(−||x1 − x2||/φ2)) + φ3,

which works well in the examples that follow, although the
method applies analogously to other variograms.

2.1 Illustrative Example

We now present an illustrative example to help explain the
concepts behind this proposed dimension expansion approach,
as well as demonstrate the inability of image warping to handle
complex nonstationarity. Specifically, we simulate a Gaussian
process with s = 100 locations on a three-dimensional half-
ellipsoid centered at (0, 0, 0) such that the projection to the
first two dimensions is a disk centered at the origin. Here, as
throughout, distances are Euclidean. Figure 1 plots the empiri-
cal variograms for the original three-dimensional space as well
as the two-dimensional projection, the latter of which results in
a highly noisy empirical variogram cloud. Our goal is to recover
the lost dimension through dimension expansion by optimizing
(2) with λ1 = 0.5, chosen to induce Z to have one dimension.
Here, we calculate the matrix of empirical dispersions v∗

ij using
1000 realizations of the Gaussian process. Figure 2 shows the re-
sulting learned locations as well as the corresponding empirical
variogram, where we see that dimension expansion is capable
of recovering the lost dimension, resulting in a variogram that
closely reproduces the original.

2.2 Image Warping and Folding

In the image warping approach, Sampson and Guttorp (1992)
employ nonmetric multidimensional scaling to move the lo-
cations along the geographic space, followed by fitting of the
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Figure 2. Learned latent locations (left) using λ2 = 10−4 as well as corresponding empirical variogram (right) after dimension expansion is
applied. The fitted exponential variogram is shown by the solid line. (The online version of this figure is in color.)

variogram γφ using traditional variogram fitting methods. From
this, a function f is found to go from the original to the warped
locations, and back via f −1. A number of adaptations of this
approach have been proposed. Smith (1996) proposed modeling
the covariance function as a linear combination of radial basis
functions using maximum likelihood as suggested by Mardia
and Goodall (1993). Monestiez and Switzer (1991) and Mon-
estiez, Sampson, and Guttorp (1993) noted that the multistage
algorithm of Sampson and Guttorp does not correspond to a uni-
fied optimization problem and instead propose finding the loca-
tions and fitting the variogram using a single-objective function,
an approach also pursued by Meiring et al. (1997). It is worth
noting that Monestiez and Switzer (1991) also explored map-
pings from R2 to R3 in the context of analyzing acid rain data,
as the same-dimension mapping was incapable of describing the
nonstationarity arising in the observed field. In a similar vein,
Iovleff and Perrin (2004) proposed using simulated annealing to
fit the spatial deformation model. Rather than imposing smooth-
ness on the deformation through thin-plate splines, they used
Delauney triangulation to constrain the mapping f from fold-
ing on itself. To acknowledge the uncertainty associated with
the deformed locations, Damian, Sampson, and Guttorp (2001),
Schmidt and O’Hagan (2003), and recently Schmidt, Guttorp,
and O’Hagan (2011) have proposed Bayesian implementations
of this approach, the latter additionally using observed covariate
information to warp into higher dimensions.

As described in the introduction, the image warping frame-
work can suffer from problems of folding, namely, of f not
being bijective (see Zidek, Sun, and Le (2000) for a particu-
larly extreme example of folding). Considering the illustrative
example of Section 2.1, admittedly designed to be illustrative of
such folding, we apply the image warping technique (Sampson
and Guttrop 1992) with f modeled as a thin-plate spline. Be-
cause the image warping framework contains no term similar to
λ1 to regularize the warped locations, smoothing must be done
through the thin-plate spline parameter λIW (analogous to λ2 in
the proposed dimension expansion framework). Figure 3 shows
the warped grids and resulting empirical variograms for various
settings of λIW applied to the ellipsoid example introduced in
Section 2.1. We observe immediately that for a highly penalized
f (corresponding to large λIW) the space does not fold; however,

the variogram fit is very poor. As λIW is relaxed to improve the fit,
the space begins to fold, highlighting a potentially serious prob-
lem with the image warping framework—an issue which is ad-
dressed in the dimension expansion paradigm proposed here.

Also related to the proposed dimension expansion method are
latent space models such as that proposed by Hoff, Raftery, and
Handcock (2002). Here, latent dimensions are used to help learn
a network of relationships between individuals. Recent work in
the field of spatial statistics has also exploited latent dimen-
sions to ensure valid cross-covariance functions in multivariate
fields. Specifically, Apanasovich and Genton (2010) used latent
dimensions for the different variables to build a class of valid
cross-covariance functions.

3. APPLICATIONS

We now present two applications of dimension expansion
applied to the modeling of nonstationary processes using two
real datasets. The first uses the solar radiation data (Hay 1984)
studied in the original image warping article of Sampson and
Guttorp (1992). The second consists of measurements from a
network of air pollution (black smoke) monitoring sites in the
UK, further details of which can be found in Elliott et al. (2007).

3.1 Solar Radiation

The data of Hay (1984) includes measurements of solar radi-
ation from 12 stations in the area surrounding Vancouver. Due
to the location and elevation of station 1 (Grouse mountain),
the field is inherently nonstationary, as exhibited by the sample
variogram (Figure 4). Figure 4 shows the original and warped
locations using Sampson and Guttorp’s image warping approach
with corresponding variogram plot. Image warping moves the
locations (in particular the station at Grouse mountain, which is
the northernmost location) to achieve something closer to sta-
tionarity. It is worth noting that overfitting may be controlled
through the parameter λIW of the thin-plate spline.

Figures 4 and 5 show the results of applying the dimen-
sion expansion approach using λ1 = 0.5 and λ1 = 0.2, respec-
tively, using a maximum number of dimensions of p = 5. The
original locations are shown, as well as the added dimensions
(Z). With λ1 = 0.5 (Figure 4, right), dimension expansion adds
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Figure 3. Warped grid of locations (top) and corresponding variograms (bottom) for various settings of the thin-plate spline parameter
λIW using the image warping technique of Sampson and Guttorp (1992). (The online version of this figure is in color.)

Figure 4. Original locations and empirical variogram for the solar radiation data (left); warped locations and associated empirical variogram
using image warping with λIW = 0.1 (center); learned locations with associated empirical variogram using dimension expansion with λ1 =
0.5, λ2 = 10−4 (right). The unit for the semivariance is (MJm−2day−1)2, and for distance is kilometer (km) (UTM coordinates, divided by 1000).
The fitted variogram is shown by a solid line, and points associated with Grouse mountain (station 1) are highlighted using an “X.” (The online
version of this figure is in color.)
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Figure 5. Dimension expansion of the solar radiation surface using λ1 = 0.2, λ2 = 10−4. Z here is five dimensions, with Z3, Z4, and Z5 set
to zero as a result of the sparsity-inducing penalization. The first two panels show the learned locations, and the rightmost panel shows the
associated empirical variogram (fitted variogram shown in red). The unit for the semivariance is (MJm−2day−1)2, and for distance is kilometer
km. Points associated with Grouse mountain (station 1) highlighted using an “X.” (The online version of this figure is in color.)

one additional dimension which primarily serves to push Grouse
mountain out of the plane, reflecting the a priori suggestion that
it is elevation that leads to the station’s spurious correlation pat-
tern. Interestingly, the contours of the learned dimension closely
resemble the elevation contours of the mountains surrounding
the Vancouver area. With λ1 = 0.2 (Figure 5), two extra dimen-
sions are used, and the fit of the parametric variogram improves
marginally. We can, therefore, see how λ1 influences the num-
ber of extra dimensions used, as well as the shrinkage in each
dimension, to control the level of fit.

3.2 Air Pollution

The data consists of annual average concentrations of black
smoke (µgm−3) over a period of 16 years from 77 locations
within the UK operating between April 1978 and March 1993
(inclusive) and was obtained from the Great Britain air qual-
ity archive (www.airquality.co.uk). Sites were selected in areas
defined wholly or partially residential and measurements were
aggregated to ward level (based on the 1991 census) using a ge-
ographical information system (Elliott et al. 2007). The majority
of wards contained a single site, but where there were more than
one, records were either joined together if the time periods did
not overlap or averaged if time periods of operation were simul-
taneous. Due to similarities in levels of air pollution in urban
locations, even if they are not geographically close, the field
is known to be nonstationary. Specifically, we see in Figure 8
reduced empirical dispersions for distances around 280–290 km
(the distance between London and Liverpool/Manchester), in-
dicating that these urban centers are more similar than their
distances would suggest. Our goal is to uncover and explore this
nonstationarity through the dimension expansion framework.

We begin with cross-validation to learn the optimal setting
of the parameters λ1, λ2 using (2) as described in Section 2.
Figure 6 shows the resulting cross-validation RMSE for various
parameter settings. We can see that moderate values of both
λ1 and λ2 result in the best prediction performance. As λ1 in-
creases to its highest value (104.5), no dimension expansion

occurs, and hence λ2 has no impact. From this, it is straightfor-
ward to see that the use of the original geographic space is a
special case of the dimension expansion framework.

Using these parameter values, the dimensionally sparse op-
timization (2) used by dimension expansion leaves all but one
dimension of Z set to zero. This dimension is shown in Figure 7,
where we see a strong ridge connecting London, Birmingham,
Liverpool, and Manchester. Hence, in the extra dimension, ma-
jor cities are moved closer together while rural areas are pushed
further away. The variograms, before and after the dimension
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Figure 6. Leave-10-out cross-validated prediction error of dimen-
sion warping applied to the UK black smoke data. Here, we see optimal
prediction for moderate values of both λ1 and λ2.

 



Bornn, Shaddick, and Zidek: Nonstationary Modeling Through Dimension Expansion 287

Figure 7. Coordinate surface of the learned dimension following dimension expansion. A strong ridge is visible connecting major cities
indicating closer correlation between these locations than would be suggested in geographic space. The locations of a selection of major cities
are shown: (1) London, (2) Birmingham, (3) Manchester, (4) Liverpool, and (5) Bristol. (The online version of this figure is in color.)

expansion, are shown in Figure 8, where we see no indications
of nonstationarity after dimension expansion is applied.

4. DISCUSSION

By augmenting the dimensionality of the underlying geo-
graphic space, we have developed a highly flexible approach
for handling the nonstationarity that often arises in environ-
mental systems. While ostensibly similar to image warping,
the proposed method avoids the issue of folding and allows

one to model much more complex nonstationarity patterns
through interdimensional expansions, allowing the user to per-
form nonparametric learning of the mapping function. In addi-
tion, through the use of a group lasso penalty, we are able to esti-
mate the number of augmented dimensions, as well as regularize
the optimization problem. Lastly, we have highlighted the prac-
tical application of the dimension expansion approach in three
examples, two of which use data from observed environmental
processes. It is worth noting that while we have developed the
spatial model in terms of variograms, it could alternatively be
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Figure 8. Binned empirical and fitted (solid line) variograms on the UK black smoke data, following dimension expansion. In the orig-
inal geographic space, we see a dip in the empirical variogram at roughly 280 km, corresponding to the distance between London and
Liverpool/Manchester. After dimension expansion is applied, the ridge between London and Liverpool/Manchester removes this effect of
nonstationarity. The unit for the semivariance is (µgm−3)2 and for distance is km.
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expressed in terms of covariances; see, for example, Gneiting,
Sasvári, and Schlather (2001) for a thorough comparison of the
two approaches.

In general, models will comprise a spatial mean or “trend”
term together with spatial covariance for deviations from this
trend. It is desirable to maximally reflect the variation in the
response using the mean function and thus known covariates,
but inevitably the mean function will not be able to capture all of
the spatial variation and thus residual spatial variation must be
modeled specifically. When all relevant covariates are included
in the mean term, it is commonly assumed that the resulting
spatial term is stationary. However, as the Karhunen–Loeve ex-
pansion shows, the modeling of spatial trend and covariance
are inseparable and misspecification of the former will induce a
second-order distortion in the latter, thus violating any assump-
tions of stationarity in many cases. Due to the complexity of
environmental processes, misspecification is inevitable because
all relevant covariates can never be known or, even if known,
observed. In the air pollution example presented here, concen-
trations in cities appeared to be more similar than that of rural
areas irrespective of their geographic proximity. If available, it
would be possible to incorporate a measure of rurality in the
mean function, possibly produced using a geographical infor-
mation system based on population density data. However, even
if such information were available, stationarity would still not
be guaranteed and so there is a need for methods such as that
proposed here to allow nonstationary models to be constructed
for the spatial process.

A Bayesian image warping approach which allows covariate
effects to be included in the correlation structure has recently
been suggested by Schmidt et al. (2011). By treating covari-
ates as analogous to geographic coordinates, they warp the
combined location-covariate space into a deformed space of
the same dimension. To achieve computational efficiency, they
consider a special case which restricts the form of the possible
mapping function and assumes the spatial process to be a
two-dimensional manifold with covariates treated as separate
values at each location.

In practice, environmental data will often take the form of
a number of measurements made over time at each location
rather than true spatial replications per se. To try and isolate the
purely spatial part of the process, the mean function may incor-
porate a temporal component, modeling underlying temporal
patterns and allowing the possibility of time-varying covariates,
or even space–time interactions. In the absence of such covari-
ate information, it would be possible to consider the notion
of time-varying nonstationarity structure. For instance, if one
wants to study the changing impact of cities and industrial areas
on air pollution levels, examining changes in stationarity over
time would be a valuable way to understand these changes. The
dimension expansion framework is also amenable to multivari-
ate extensions. We are currently exploring a scenario whereby
the dimension expansion functions and locations have a hierar-
chical structure, allowing the dimension expansion to vary for
different variables, yet be tied together through the hierarchy.

We have demonstrated how the proposed approach can be
used to perform predictions in the transformed, stationary space
and mapped back to the original space. At present, the choice
of the mapping, learning of latent locations, and prediction are
performed in isolation. As the Sampson and Guttorp (1992)

approach was set within a Bayesian framework by Damian et
al. (2001) and Schmidt and O’Hagan (2003), setting the cur-
rent algorithmic approach within such an inferential framework
would allow the inherent uncertainty to be accurately reflected
in resulting inferences and this is the goal of current research.

A OPTIMIZATION OF EQUATION (2)

As with traditional multidimensional scaling, penalization
functions of the form (1) do not have a unique maximum. How-
ever, the learned locations are unique up to rotation, scaling,
and sign. The optimization problem (2) is more regularized,
however, due to the presence of the l1-norm. Specifically, not all
rotations and scalings of the learned locations will have the same
l1-norm, and hence the resulting optimization is unique only up
to sign and indices of zero/nonzero dimensions. For example,
consider finding the location of a single latent location in two
latent dimensions. The locations (1, 0) and (1/

√
2, 1

√
2) fit the

objection function (1) equally well, yet their l1-norms are 1 and√
2, respectively. Note that since the end goal is not to learn the

dimensions, but rather to find an expanded space in which the
process is stationary, the existence of multiple possible expan-
sions is not important, so long as one of the projections in the
equivalence class is found.

In our experience, traditional optimization procedures such
as Nelder–Mead or the Broyden–Fletcher–Goldfarb–Shanno
method (Nocedal and Wright 1999) work well for a moder-
ate amount of locations (s < 100) and dimensions (p < 3). For
larger problems, it may be necessary to use purpose-built op-
timization routines intended for generalized group lasso. Let
&(U) be the first term in (2), where U = [X, Z]. Then column k
of the gradient matrix is

∇k&(U) = 2
p

! ◦
(
U·,k1p×p − 1p×pUT

·,k
)

1p×1,

where

!i,j =
(
γφ(dij (U)) − ν∗

ij

) ∂γφ

∂dij

.

Using this gradient information, the gradient projection algo-
rithm of Kim et al. (2006) may be used to optimize (2). The
algorithm proceeds as follows:

Initialize : U0 = 0, α : sufficiently small positive constant
for t = 1, . . . , T do

Set u = Ut−1 − α∇&(Ut−1) and η = {1, . . . , p}
while Mj > 0 ∀j do

For j = 1, . . . , p

Mj = I (j ∈ η) ×
(

||uj || +
M −

∑
j∈η ||uj ||

|η|

)

Set η = {j : Mj > 0}
end
Set Ut−1

·,j = uj
Mj

||uj || for j = 1, . . . , p

end
Return UT

From this, one can alternate between optimizing the parameters
of the variogram and the latent locations. Further algorithmic
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details, such as the tuning of M and the setting of the algorithmic
parameter α, can be found in Kim et al. (2006).

[Received November 2010. Revised June 2011.]
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