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An Adaptive Interacting Wang–Landau
Algorithm for Automatic Density Exploration
Luke BORNN, Pierre E. JACOB, Pierre DEL MORAL, and Arnaud DOUCET

While statisticians are well-accustomed to performing exploratory analysis in the
modeling stage of an analysis, the notion of conducting preliminary general-purpose ex-
ploratory analysis in the Monte Carlo stage (or more generally, the model-fitting stage)
of an analysis is an area that we feel deserves much further attention. Toward this aim,
this article proposes a general-purpose algorithm for automatic density exploration. The
proposed exploration algorithm combines and expands upon components from various
adaptive Markov chain Monte Carlo methods, with the Wang–Landau algorithm at its
heart. Additionally, the algorithm is run on interacting parallel chains—a feature that
both decreases computational cost as well as stabilizes the algorithm, improving its
ability to explore the density. Performance of this new parallel adaptive Wang–Landau
algorithm is studied in several applications. Through a Bayesian variable selection exam-
ple, we demonstrate the convergence gains obtained with interacting chains. The ability
of the algorithm’s adaptive proposal to induce mode-jumping is illustrated through a
Bayesian mixture modeling application. Last, through a two-dimensional Ising model,
the authors demonstrate the ability of the algorithm to overcome the high correlations
encountered in spatial models. Supplemental materials are available online.

Key Words: Adaptive binning; Adaptive Markov chain Monte Carlo; Parallel chains;
Wang-Landau algorithm.

1. INTRODUCTION

As improvements in technology introduce measuring devices capable of capturing ever
more complex real-world phenomena, the accompanying models used to understand such
phenomena grow accordingly.While linear models under the assumption of Gaussian noise
were the hallmark of early twentieth century statistics, the past several decades have seen
an explosion in statistical models that produce complex and high-dimensional density
functions for which simple, analytical integration is impossible. This growth was largely
fueled by renewed interest in Bayesian statistics accompanying the Markov chain Monte
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Carlo (MCMC) revolution in the 1990s. With the computational power to explore the
posterior distributions arising from Bayesian models, MCMC allowed practitioners to
build models of increasing size and nonlinearity.

As a core component of many of the MCMC algorithms discussed later, we briefly recall
the Metropolis–Hastings (M–H) algorithm. With the goal of sampling from a density π , the
algorithm generates a Markov chain (xt )Tt=0 with invariant distribution π . From a current
state xt , a new state x ′ is sampled using a proposal density qη(xt , x

′) parameterized by η.
The proposed state x ′ is accepted as the new state xt+1 of the chain with probability

min
(

1,
π (x ′)qη(x ′, xt )
π (xt )qη(xt , x ′)

)

and if it is rejected, the new state xt+1 is set to the previous state xt . From this simple
algorithmic description, it is straightforward to see that if xt is in a local mode and the
proposal density qη(xt , x

′) has not been carefully chosen to propose samples from distant
regions, the chain will become stuck in the current mode. This is due to the rejection of
samples proposed outside the mode, underscoring the importance of ensuring qη(xt , x

′) is
intelligently designed.

Though standard MCMC algorithms such as the M–H algorithm and the Gibbs sampler
have been studied thoroughly and the convergence to the target distribution is ensured
under weak assumptions, many applications introduce distributions that cannot be sampled
easily by these algorithms. Multiple reasons can lead to failure in practice, even if long-run
convergence is guaranteed; the question then becomes whether or not the required number
of iterations to accurately approximate the density is reasonable given the currently available
computational power. Among these reasons, let us cite a few that will be illustrated in later
examples: the probability density function might be highly multimodal, in which case the
chain can get stuck in local modes. Alternatively or additionally, it might be defined on a
high-dimensional state space with strong correlations between the components, in which
case the proposal distributions (and in particular their large covariance matrices) are very
difficult to tune manually. These issues lead to error and bias in the resulting inference, and
may be detected through convergence monitoring techniques (see, e.g., Robert and Casella
2004). However, even when convergence is monitored, it is possible that entire modes of
the posterior are missed. To address these issues, we turn to a burgeoning class of Monte
Carlo methods, which we refer to as “exploratory algorithms.”

In the following section, we discuss the traits that allow exploratory MCMC algorithms
to perform inference in multimodal, high-dimensional distributions, connecting these traits
to existing exploratory algorithms in the process. In Section 3, we detail one of these,
the Wang–Landau algorithm, and propose several novel improvements that make it more
adaptive, hence easier to use, and also improve convergence. Section 4 applies the proposed
algorithm to variable selection, mixture modeling, and spatial imaging, before Section 5
concludes.

2. EXPLORATORY ALGORITHMS

As emphasized by Schmidler (2011), there are two distinct goals of existing adaptive
algorithms. First, algorithms which adapt the proposal according to past samples are largely
exploitative, in that they improve sampling of features already seen. However, modes or
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features not yet seen by the sampler might be quite different from the previously explored
region, and as such adaptation might prevent adequate exploration of alternate regions
of the state space. As an attempted solution to this problem, Craiu, Rosenthal, and Yang
(2009) suggested adapting regionally, with parallel chains used to perform the adaptation.
Second, there exists a set of adaptive algorithms whose goal is to adapt in such a way
as to encourage density exploration. These include, for instance, the equi-energy sampler
(Kou, Zhou, and Wong 2006), parallel tempering (Swendsen and Wang 1986; Geyer 1991),
and the Wang–Landau (Wang and Landau 2001a,b; Liang 2005; Atchadé and Liu 2010)
algorithms among others. The algorithm developed here fits into the latter suite of tools,
whose goal is to explore the target density, particularly distant and potentially unknown
modes.

Although the aforementioned algorithms have proven efficient for specific challenging
inference problems, they are not necessarily designed to be generic, and it is often difficult
and time-consuming for practitioners to learn and code these algorithms merely to test a
model. As such, while statisticians are accustomed to exploratory data analysis, we believe
that there is room for generic exploratory Monte Carlo algorithms to learn the basic features
of the distribution or model of interest, particularly the locations of modes and regions of
high correlation. These generic algorithms would ideally be able to deal with discrete and
continuous state spaces and any associated distribution of interest, and would require as
few parameters to tune as possible, such that users can use them before embarking on time-
consuming, tailor-made solutions designed to estimate expectations with high precision. In
this way, one may perform inference and compare between a wide range of models without
building custom-purpose Monte Carlo methods for each.

We first describe various ideas that have been used to explore highly multimodal densi-
ties, and then describe recent works aimed at automatically tuning algorithmic parameters
of MCMC methods, making them able to handle various situations without requiring much
case-specific work from the user.

2.1 ABILITY TO CROSS LOW-DENSITY BARRIERS

The fundamental problem of density exploration is settling into local modes, with an
inability to cross low-density regions to find alternative modes. For densities π that are
highly multimodal, or “rugged,” one can employ tempering strategies, sampling instead
from a distribution proportional to π1/τ with temperature τ > 1. Through tempering, the
peaks and valleys of π are smoothed, allowing easier exploration. This is the fundamental
idea behind parallel tempering, which employs multiple chains at different temperatures;
samples are then swapped between chains, using highly tempered chains to assist in the ex-
ploration of the untempered chain (Geyer 1991). Marinari and Parisi (1992) subsequently
proposed simulated tempering that dynamically moves a single chain up or down the
temperature ladder. One may also fit tempering within a sequential Monte Carlo (SMC)
approach, whereby samples are first obtained from a highly tempered distribution; these
samples are transitioned through a sequence of distributions converging to π using impor-
tance sampling and moves with a Markov kernel (Neal 2001; Del Moral, Doucet, and Jasra
2006). However, using tempering strategies with complex densities, one must be careful
of phase transitions where the density transforms considerably across a given temperature
schedule.
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A related class of algorithms works by partitioning the state space along the energy func-
tion − log π (x). The idea of slicing, or partitioning, along the energy function is the hallmark
of several auxiliary variable sampling methods that iteratively sample U ∼ U[0,π (X)] so
that X ∼ U{X : π (X) ≥ U}. This is the fundamental idea behind the Swendsen–Wang
algorithm (Swendsen and Wang 1987; Edwards and Sokal 1988) and related algorithms
(e.g., Besag and Green 1993; Higdon 1998; Neal 2003). The equi-energy sampler (Kou,
Zhou, and Wong 2006; Baragatti, Grimaud, and Pommeret 2012), in contrast to the above
auxiliary variable methods, begins by sampling from a highly tempered distribution; once
convergence is reached, a new reduced-temperature chain is run with updates from a mix-
ture of Metropolis moves and exchanges of the current state with the value of a previous
chain in the same energy band. The process is continued until the temperature reaches 1
and the invariant distribution of the chain is the target of interest. As such, this algorithm
works through a sequence of tempered distributions, using previous distributions to create
intelligent mode-jumping moves along an equal-energy set.

In a similar vein, the Wang–Landau algorithm (Wang and Landau 2001a,b) also partitions
the state space X along a reaction coordinate ξ (x), typically the energy function: ξ (x) =
− log π (x), resulting in a partition (Xi)di=1. The algorithm generates a time-inhomogeneous
Markov chain that admits an invariant distribution π̃t at iteration t, instead of the target
distribution π itself as, for example, in a standard M–H algorithm. The distribution π̃t is
designed such that the generated chain equally visits the various regions Xi as t → ∞.
Because the Wang–Landau algorithm lies at the heart of our proposed algorithm, it is
extensively described in Section 3.

It is worth discussing a similar, recently proposed algorithm that combines MCMC and
free energy biasing (Chopin, Lelievre, and Stoltz 2012) and its SMC counterpart (Chopin
and Jacob 2010). The central idea of the latter is to explore a sequence of distributions,
successively biasing according to a reaction coordinate ξ in a similar manner. However, we
have found the method to be largely dependent on selecting a well-chosen initial distribution
π0, as is usually the case with SMC methods for static inference. If the initial distribution
is not chosen to be flatter than the target distribution, which is possibly the case since the
regions of interest with respect to the target distribution are a priori unknown, the efficiency
of the SMC methods relies mostly on the move steps, which are themselves M–H or Gibbs
moves.

2.2 ADAPTIVE PROPOSAL MECHANISM

Concurrent with the increasing popularity of exploratory methods, the issue of adaptively
fine-tuning MCMC algorithms has also seen considerable growth since the foundational
article of Haario, Saksman, and Tamminen (2001), including a series of conferences dedi-
cated solely to the problem (namely, Adap’ski 1 through 3 among others); see the reviews
of Andrieu and Thoms (2008) and Atchadé et al. (2011) for more details. While the de
facto standard has historically been hand-tuning of MCMC algorithms, this new work finds
interest in automated tuning, resulting in a new class of methods called adaptive MCMC.

The majority of the existing literature focuses on creating intelligent proposal distri-
butions for an MCMC sampler. The principal idea is to exploit past samples to induce
better moves across the state space by matching moments of the proposal and past samples,
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or by encouraging a particular acceptance rate of the sampler. The raison d’être of these
algorithms is that tuning MCMC algorithms by hand is both time-consuming and prone to
inaccuracies. By automating the selection of the algorithm’s parameters, practitioners might
save considerable time in their analyses. This feature is pivotal in an automated density
exploration algorithm. Due to its exploratory nature, it is likely that the practitioner might
not have complete knowledge of even the scale of the density’s support; as a result, having
a proposal distribution that adapts to the density at hand is a crucial step in the automation
process.

One must be careful in selecting the type of adaptation mechanism employed to encour-
age exploration, rather than simply exploiting previously explored modes. For instance,
tuning a proposal covariance to a previously visited mode might prevent the algorithm from
reaching as yet unexplored modes in the direction of the current mode’s minor axis. Addi-
tionally, when combined with a progressively biased distribution as in the Wang–Landau
algorithm, it is desirable to have a proposal which first samples what it sees well, then later
grows in step size to better explore the flattened (biased) distribution.

3. PROPOSED ALGORITHM

We now develop our proposed algorithm. After recalling the Wang–Landau algorithm,
which constitutes the core of our method, we describe three improvements: an adaptive
binning strategy to automate the difficult task of partitioning the state space, the use of
interacting parallel chains to improve the convergence speed and use of computational
resources, and finally the use of adaptive proposal distributions to encourage exploration as
well as to reduce the number of algorithmic parameters. We detail at the end of the section
how to use the output of the algorithm, which we term parallel adaptive Wang–Landau
(PAWL), to answer the statistical problem at hand.

3.1 THE WANG–LANDAU ALGORITHM

As previously mentioned, the Wang–Landau algorithm generates a time-inhomogeneous
Markov chain that admits a distribution π̃t as the invariant distribution at iteration t. The
biased distribution π̃t targeted by the algorithm at iteration t is based on the target distribution
π , and modified such that (a) the generated chain visits all the sets (Xi)di=1 equally, that is,
the proportion of visits in each set is converging to d−1 when t goes to infinity and (b) the
restriction of the modified distribution π̃t to each set Xi coincides with the restriction of
the target distribution π to this set, up to a multiplicative constant. The modification (a) is
crucial, as inducing uniform exploration of the sets is the biasing mechanism that improves
exploration; in fact similar strategies are used in other fields, including combinatorial
optimization (Wei, Erenrich, and Selman 2004). Ideally the biased distribution π̃ would
not depend on t, and would be available analytically as

π̃ (x) = π (x) × 1
d

d∑

i=1

IXi
(x)

ψ(i)
, (1)

where ψ(i) =
∫
Xi

π (x)dx and IXi
(x) is equal to 1 if x ∈ Xi and 0 otherwise. Checking

that using π̃ as the invariant distribution of an MCMC algorithm would validate points
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Figure 1. Probability density functions for a univariate distribution π and its biased version π̃ when partitioning
the state space along the x-axis (ξ (x) = x, middle) and the log density (ξ (x) = − log π (x), right). The leftmost
plot also shows the partitioning of the state space with ξ (x); in both cases d = 20. The biasing is done such that
the integral

∫
Xi

π̃ (x)dx is the same for all Xi (areas under the curve for each set) and such that π and π̃ coincide
on each set Xi , up to a multiplicative constant. The online version of this figure is in color.

(a) and (b) is straightforward. Figure 1 illustrates a univariate target distribution π and its
corresponding biased distribution π̃ under two different partitions of the state space.

In practical situations, however, the integrals (ψ(i))di=1 are not available, hence we wish
to plug estimates (θ (i))di=1 of (ψ(i))di=1 into Equation (1). The Wang–Landau algorithm
is an iterative algorithm that jointly generates a sequence of estimates (θt (i))t≥0 for all i
and a Markov chain (Xt )t , such that when t goes to infinity, θt (i) converges to ψ(i) and
consequently, the distribution of Xt converges to π̃ . We denote by π̃θt

the biased distribution
obtained by replacing ψ(i) by its estimate θt (i) in Equation (1). Note that the normalizing
constant of π̃θt

is now unknown. A simplified version of the Wang–Landau algorithm is
given in Algorithm 1.

Algorithm 1 Simplified Wang–Landau Algorithm
1: Partition the state space into d regions {X1, . . . ,Xd} along a reaction coordinate ξ (x).
2: First, ∀i ∈ {1, . . . , d} set θ (i) ← 1.
3: Choose a decreasing sequence {γt }, typically γt = 1/t .
4: Sample X0 from an initial distribution π0.
5: for t = 1 to T do
6: Sample Xt from Pθt−1 (Xt−1, ·), a transition kernel with invariant distribution π̃θt−1 (x).
7: Update the bias: log θt (i) ← log θt−1(i) + γt (IXi

(Xt ) − d−1).
8: Normalize the bias: θt (i) ← θt (i)/

∑d
i=1 θt (i).

9: end for

The rationale behind the update of the bias is that if the chain is in the set Xi , the
probability of remaining in Xi should be reduced compared with the other sets through
an increase in the associated bias θt (i). Therefore, the chain is pushed toward the sets that
have been visited less during the previous iterations, improving the exploration of the state
space so long as the partition (Xi)di=1 is well chosen. While this biasing mechanism adds
cost to each iteration of the algorithm, the tradeoff is improved exploration. In Step 6, the
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transition kernel is typically an M–H move, due to the lack of conjugacy brought about by
biasing.

In this simplified form, the Wang–Landau algorithm reduces to standard stochastic
approximation, where the term γt decreases at each iteration. The algorithm as given in
Wang and Landau (2001a,b) uses a more sophisticated learning rate γt that does not decrease
deterministically, but instead only when a certain criterion is met. This criterion, referred
to as the “flat histogram” criterion, is met when for all i ∈ {1, . . . , d}, ν(i) is close enough
to d−1, where we denote by ν(i) the proportion of visits of (Xt ) in the set Xi since the last
time the criterion was met. Hence, we introduce a real number c to control the distance
between ν(i) and d−1, and an integer k to count the number of criteria already met. We
describe the generalized Wang–Landau algorithm in Algorithm 2.

Algorithm 2 Wang-Landau Algorithm
1: Partition the state space into d regions {X1, . . . ,Xd} along a reaction coordinate ξ (x).
2: First, ∀i ∈ {1, . . . , d} set θ (i) ← 1, ν(i) ← 0.
3: Choose a decreasing sequence {γk}, typically γk = 1/k.
4: Sample X0 from an initial distribution π0.
5: for t = 1 to T do
6: Sample Xt from Pθt−1 (Xt−1, ·), a transition kernel with invariant distribution π̃θt−1 (x).
7: Update the proportions: ∀i ∈ {1, . . . , d} ν(i) ← 1

t
[(t − 1)ν(i) + IXi

(Xt )].
8: if “flat histogram”: maxi∈[1,d] |ν(i) − d−1| < c/d then
9: Set k ← k + 1.

10: Reset ∀i ∈ {1, . . . , d} ν(i) ← 0.
11: end if
12: Update the bias: log θt (i) ← log θt−1(i) + γk(IXi

(Xt ) − d−1).
13: Normalize the bias: θt (i) ← θt (i)/

∑d
i=1 θt (i).

14: end for

When c is set to low values (e.g., c = 0.1 or 0.5), the algorithm must explore the various
regions such that the frequency of visits to the region Xi is approximately d−1 before the
learning rate γk is decreased. Also, the algorithm may be further generalized to target a
desired frequency φi instead of the same frequency d−1 for every set; while such strategies
may be useful, as demonstrated in the following section, for notational simplicity we focus
on the case φi = d−1. As already mentioned, to answer the general question of exploring
the support of a target density π , the default choice for the reaction coordinate is the energy
function: ξ (x) = − log π (x), which has the benefit of being one-dimensional regardless of
the dimension of the state space X . However, for specific models other reaction coordinates
have been used, such as one (or more) of the components xj of x or a linear combination of
components of x. In the applications in Section 4, we discuss the use of alternative reaction
coordinates further.

We now propose improvements to the Wang–Landau algorithm to increase its flexibility
and efficiency.
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3.2 A NOVEL ADAPTIVE BINNING STRATEGY

The Wang–Landau and equi-energy sampler algorithms are known to perform well if
the bins, or partitions of the one-dimensional reaction coordinate ξ (x), are well chosen.
However, depending on the problem it might be difficult to choose the bins to optimize
sampler performance. A typical empirical approach to deal with this issue is to first run, for
example, an adaptive MCMC algorithm to find at least one mode of the target distribution.
The generated sample and the associated target density evaluations determine a first range
of the target density values, which can be used to initialize the bins. At this point, the user
can choose a wider range of target density values (e.g., by multiplying the range by 2), to
allow for a wider exploration of the space. Within this initial range, one must still decide
the number of bins.

Due to difficulties with selecting the bins, it has been suggested that one should adaptively
compare adjacent bins, splitting a bin if the corresponding estimate θ is significantly larger
than a neighboring value (Schmidler 2011). Because each ψi is a given bin’s normalizing
constant, we feel it is more important to maintain uniformity within a bin to allow easy
within-bin movement. Our proposed approach to achieve this “flatness” is to look at the
distribution of the realized reaction coordinate values within each bin. Figure 2 illustrates
this distribution on an artificial histogram. The plot of Figure 2(a) shows a situation where,
within one bin, the distribution might be strongly skewed toward one side. In this artificial
example, very few points have visited the left side of the bin, which suggests that moving
from this bin to the left neighboring bin might be difficult.

We propose to consider the ratio of the number of points on the left side of the middle
(dashed line) over the number of points within the bin as a very simple proxy for the
discrepancy of the chains within one bin (see, e.g., Niederreiter 1992 for much more
sophisticated discrepancy measures). In a broad outline, if this ratio was around 50%, the
within-bin histogram would be roughly uniform. On the contrary, the ratio corresponding
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Figure 2. Artificial histograms of the log target density values associated with the chains generated by the
algorithm, within a single bin (left) and within two bins created by splitting the former bin (right).
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to Figure 2 (left) is around 7%. Our strategy is to split the bin if this ratio goes below a
given threshold, say 25%; two new bins are created, corresponding to the left side and the
right side of the former bin, and each bin is assigned a weight of θ/2, where θ is the weight
of the former bin. These provide starting values for the estimation of the weight of the new
bins during the following iterations of the algorithm. Note also that the desired frequency
of visits to each of the new bins, which was for instance equal to 1/d before the split, has
to be specified as well. In the numerical experiments, we set the desired frequency of the
new bins as one-half of the desired frequency of the former bin. Figure 2 (right) shows the
distribution of samples within the two new bins. The resulting histogram is not uniform,
yet exhibits a more even distribution within the bin—a feature that is expected to help the
chain to move from this bin to the left neighboring bin. The threshold could be set closer
to 50%, which would result in more splits and therefore more bins.

In practice, it is not necessary to check whether the bins have to be split at every
iteration. Our strategy is to check every nth iteration, until the flat histogram criterion is
met for the first time. When it is met, it means that the chains can move easily between the
bins, and hence the bins can be kept unchanged for the remaining iterations. Finally, when
implementing the automatic binning strategy for discrete distributions, one must ensure
that a new bin corresponds to actual points in the state space. For example, if the bins
are along the energy values and the state space is finite, there are certainly intervals of
energy to which no state corresponds, and that would therefore never be reached. Section
4 demonstrates the proposed adaptive binning strategy in practice.

In addition to allowing for splitting of bins, it is also important to allow the range
of bins to extend if new states are found outside of the particular range. That said, one
must differentiate between the two extremes of the reaction coordinate. For example, if
ξ (x) = − log π (x), then one might not wish to add more low-density (high-energy) bins,
which would induce the sampler to explore further and further into the tails. However, if one
finds a new high-density (low-energy) mode beyond the energy range previously seen, then
the sampler might become stuck in this new mode. In this case, we propose to extend the
first bin corresponding to the lowest level of energy to always include the lowest observed
values. The adaptive partition (Xi,t )

dt

i=1 of the state space takes the following form at time t:

X1,t = [emin,t , e1,t ], X2,t = [e1,t , e2,t ], . . .Xdt ,t = [edt−1,t ,+∞),

where emin,t = mint≥0{− log π (Xt )} and (e1,t , . . . , edt−1,t ) defines the limits of the inner
bins at time t, which is the result of initial bin limits (e1,0, . . . , ed0−1,0), and possible splits
between time 0 and time t. As such, if new low-energy values are found, the bin X1,t is
widened. If this results in unequal exploration across the reaction coordinate, then the
adaptive bin-splitting mechanism will automatically split this newly widened bin.

3.3 PARALLEL INTERACTING CHAINS

We propose to generate multiple chains instead of a single one to improve computational
scalability through parallelization as well as particle diversity. The use of interacting chains
has become of much interest in recent years, with the multiple chains used to create
diverse proposals (Casarin, Craiu, and Leisen 2011), to induce long-range equi-energy
jumps (Kou, Zhou, and Wong 2006), and to generally improve sampler performance; see
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Atchadé et al. (2011), Brockwell, Del Moral, and Doucet (2010), and Byrd (2010) for recent
developments. The use of parallelization is not constrained to multiple chains, however, and
has also been employed to speed up the generation of a single chain through prefetching
(Brockwell 2006).

Let N be the desired number of chains. We follow Algorithm 2, with the following
modifications. First, we generate N starting points X0 = (X(1)

0 , . . . , X
(N)
0 ) independently

from an initial distribution π0 (Algorithm 2 line 4). Then, at iteration t, instead of moving
one chain using the transition kernel Pθt−1 , we move the N chains using the same transition
kernel, associated with the same bias θt−1 (Algorithm 2 line 6). We emphasize that the bias
θ is common to all chains, which makes the proposed method different from running Wang–
Landau chains entirely in parallel. The proportions ν(i) are updated using all the chains,
simply by replacing the indicator function IXi

(Xt ) by the mean N−1 ∑N
j=1 IXi

(X(j )
t ), that is,

the proportion of chains currently in set Xi (Algorithm 2 line 7). Likewise, the update of the
bias uses all the chains, again replacing the indicator function by the proportion of chains
currently in a given set (Algorithm 2 line 12). We have therefore replaced indicator functions
in the Wang–Landau algorithm by the law of the MCMC chain associated with the current
parameter. Since this law is not accessible, we perform a mean field approximation at each
time step. A similar expression has recently been employed by Liang and Wu (2011) for
use in parallelizing the stochastic approximation Monte Carlo (SAMC) algorithm (Liang,
Liu, and Carroll 2007; Liang 2009). Note that while we have designed the chains to
communicate at each iteration, such frequent message passing can be costly, particularly
on graphics processing units. In such situations, one could alter the algorithm such that the
chains only communicate periodically.

Our results (see Section 4) show that N interacting chains run for T iterations can
strongly outperform a single-chain run for N × T iterations, in terms of variance of the
resulting estimates. Specifically, having a sample approximately distributed according to
πθt

(x) instead of a single point at iteration t improves and stabilizes the subsequent estimate
θt+1. We explore the tradeoff between N and T in more detail in Section 4.

Note that, while the original single-chain Wang–Landau algorithm was not straightfor-
ward to parallelize due to its iterative nature, the proposed algorithm can strongly benefit
from multiple processing units: at a given iteration the N move steps can be done in parallel,
as long as the results are consequently collected to update the bias before the next iteration.
Therefore, if multiple processors are available, as, for example, in recent central processing
units and in graphics processing units (see, e.g., Suchard and Rambaut 2009; Lee et al.
2010), the computational cost can be reduced much more than what was possible with
the single-chain Wang–Landau algorithm. To summarize, the proposed use of interacting
chains can both improve the convergence of the estimates, regardless of the number of
available processors, and additionally benefit from multiple processors.

Finally, an additional benefit of using N parallel chains is that they can start from various
points, drawn from the initial distribution π0; hence if π0 is flat enough, the chains can
start from different local modes, which improves de facto the exploration. However, we
show in Section 4 that the chains still explore the space even if they start within the same
mode, and hence the efficiency of the method does not rely on the choice of π0, contrary to
what we observed with SMC methods. Additionally, because the sampler is attempting to
explore both the state space as well as the range of the reaction coordinate simultaneously,
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our parallel formulation allows the sampler to borrow strength between chains, providing
for exploration of the reaction coordinate without having to move a single chain across
potentially large and high-dimensional state-spaces to traverse the reaction coordinate
values.

3.4 ADAPTIVE PROPOSAL MECHANISM

As discussed earlier, it is important to automate the proposal mechanism to improve
movement across the state space. A well-studied proxy for optimal movement is the al-
gorithm’s M–H acceptance rate. Too low an acceptance rate signifies the algorithm is
attempting to make moves that are too large, and are therefore rejected. Too high an accep-
tance rate signifies the algorithm is barely moving. As such, we suggest adaptively tuning
the proposal variance to encourage an acceptance rate of 0.234 as recommended in Roberts,
Gelman, and Gilks (1997), although we have found settings in the range 0.1–0.5 to work
well in all examples tested. The Robbins–Monro stochastic approximation update of the
proposal standard deviation σt is

σt+1 = σt + ρt (2I(A > 0.234) − 1) ,

where t is the current iteration of the algorithm, ρt is a decreasing sequence (typically
ρt = 1/t), and A is the acceptance rate (proportion of accepted moves) of the particles.
Through this update, the proposal variance grows after samples are accepted, and shrinks
when samples are rejected, encouraging exploration of the state-space.

Another approach to adaptively tuning the proposal distribution is to use the following
mixture of Gaussian random walks:

X∗ ∼ w1N
(

Xt−1,
(2.38)2

p
,t

)
+ w2N

(
Xt−1,

(σI )2

p
Ip

)

with w1 + w2 = 1, ,t being the empirical covariance of the chain history—an estimator of
the covariance structure of the target—and Ip being the p × p identity matrix, where p is
the dimension of the target space. The first component of this mixture makes the proposal
adaptive and able to learn from the past, while the second component helps to explore the
space. For instance, if the chain is stuck in a mode, the first component’s variance might
become small, yet the second component guarantees a chance to eventually escape the
mode. Hence, the second component acts as a “safety net” and therefore its weight is small,
typically w2 = 0.05, and its standard deviation σI may be set large to improve mixing
(Guan and Krone 2007).

In our context where parallel chains are run together, we use all the chains to estimate
the empirical covariance ,t at each iteration. Note that the computation of this covariance
does not require the storage of the whole history of the chain and can be done at constant
cost, since recurrence formulas exist to compute the empirical covariance, as explained for
instance in Welford (1962). The value 2.382 is justified by asymptotic optimality reflections
on certain classes of models (see, e.g., Roberts, Gelman, and Gilks 1997; Roberts and
Rosenthal 2009).
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3.5 USING THE OUTPUT TO PERFORM INFERENCE

While the resulting samples from the proposed algorithm PAWL are not from π , but
rather an approximation of the biased version (1), one can use importance sampling or
advanced SMC ideas to transition the samples to π (see Chopin and Jacob 2010 for
details). Alternatively, the samples from the exploratory algorithm can be used to seed a
more traditional MCMC algorithm, as advocated by Schmidler (2011).

The pseudocode for PAWL, combining the parallel Wang–Landau algorithm with adap-
tive binning and proposal mechanisms, is given in the Appendix. Before proceeding to
examples, it is important to reiterate the importance of the values ψ(i) =

∫
Xi

π (x)dx.
Specifically, certain choices of the reaction coordinate ξ (x) result in ψ(i) having inherent
value. For example, it is possible in a model selection application to use the model order as
ξ (x), in which case the values ψ(i) could be employed to calculate Bayes factors and other
quantities of interest.

4. APPLICATIONS

We now demonstrate PAWL applied to three examples including variable selection,
mixture modeling, and spatial imaging. A fourth pedagogical example is available as
supplementary material. In each application, we walk through our proposed algorithm
(described explicitly as Algorithm 3 in the Appendix), first running preliminary (adaptive)
M–H MCMC to determine the initial range for the reaction coordinate ξ and initial values
for the proposal parameters and starting state of the interacting Wang–Landau chains. This
range is then increased to encourage exploration of low-density regions of the space, and an
initial number of bins is specified. Once this groundwork is set, the same M–H algorithm
run in the preliminary stage is embedded within the PAWL algorithm.

4.1 g-PRIOR VARIABLE SELECTION

We proceed by conducting variable selection on the pollution dataset of McDonald and
Schwing (1973), wherein mortality is related to pollution levels through 15 independent
variables including mean annual precipitation, population per household, and average an-
nual relative humidity. Measured across 60 metropolitan areas, the response variable y is
the age-adjusted mortality rate in the given metropolitan area. Our goal is to identify the
pollution-related independent variables that best predict the response. With 15 variables,
calculating the posterior probabilities of the 32,768 models exactly is possible but time-
consuming. We have chosen this size of dataset to provide for difficult posterior exploration,
yet allow a study of convergence of θ toward ψ .

With an eye toward model selection, we introduce the binary indicator variable γ ∈
{0, 1}p, where γj = 1 means the variable xj is included in the model. As such, γ can
describe all of the 2p possible models. Consider the normal likelihood

y|µ, X,β, σ 2 ∼ Nn(Xβ, σ 2In).
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If Xγ is the model matrix that excludes all xj ’s if γj = 0, we can employ the following
prior distributions for β and σ 2 (Zellner 1986; Marin and Robert 2007):

π (βγ , σ 2|γ ) ∝ (σ 2)−(qγ +1)/2−1 exp
[
− 1

2gσ 2
βT

γ

(
XT

γ Xγ

)
βγ

]
,

where qγ = 1T
n γ represents the number of variables in the model. While selecting g can

be a difficult problem, we have chosen it to be very large (g = exp(20)) to induce a sparse
model, which is difficult to explore due to the small marginal probabilities of most variables.
After integrating over the regression coefficients β, the posterior density for γ is thus

π (γ |y, X) ∝ (g + 1)−(qγ +1)/2
[

yT y − g

g + 1
yT Xγ

(
XT

γ Xγ

)−1Xγ y
]−n/2

.

While we select the log energy function − log π (x) as the reaction coordinate ξ (x) for
our analysis, it is worth noting that many other options exist. For instance, it would be
natural to consider the model saturation qγ /p, which would ensure exploration across the
different model sizes. However, we select ξ (x) = − log π (x) to emphasize the universality
of using the energy function as the reaction coordinate.

We first run a preliminary M–H algorithm that flips a variable on/off at random, ac-
cepting or rejecting the flip based on the resulting posterior densities. Due to high cor-
relation between variables, a better strategy might be to flip multiple variables at once;
however, we restrain from exploring this to demonstrate PAWL’s ability to make vi-
able even poorly designed M–H algorithms. The preliminary algorithm run found values
377 < − log π (x) < 410, which we extend slightly to create 20 equally spaced bins in the
range [377, 450]. It is worth reiterating that the resulting samples generated from PAWL
are from a biased version of π ; as such, importance sampling techniques could be used
to recover π , or the samples obtained could be used to seed a more traditional MCMC
algorithm.

Due to the size of the problem, we are able to enumerate all posterior values, and hence
may calculate ψ exactly. As such, we begin by examining the effect of the number of
particles N on the parallel Wang–Landau algorithm. To further focus on this aspect, we
suppress adaptive binning and proposals for this example. Figure 3 shows the convergence
of θ to - for N = 1, 10, 100. We see that the algorithm’s convergence improves with
more particles. Using N = 100 particles, we now examine PAWL compared with the M–H
algorithm (run on N chains) mentioned above on the unnormalized targets π,π1/10,π1/100.
Consider Figure 4; on the target distribution π , the M–H algorithm becomes stuck in
high-probability regions. However, on the tempered distributions, the algorithm explores
the space more thoroughly, although not to the same level as PAWL. Specifically, PAWL
explores a much wider range of models, including the highest probability models, whereas
the tempered distributions do not. Here, the Wang–Landau algorithm as well as the M–H
algorithm both use N = 100 chains for T = 3500 iterations, the former taking 253 ± 13 sec
and the latter taking 247 ± 15 sec across 10 runs, indicating that the additional cost for
PAWL is negligible.
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Figure 3. Variable selection example: convergence of Wang–Landau for N = 1, 10, 100. Iterations set such that
each algorithm runs in 2 min (±5 sec). θ for each bin is shown as solid lines. True values (ψ) are shown as dotted
lines. The online version of this figure is in color.

Figure 4. Variable selection example: exploration of model space by PAWL and Metropolis–Hastings (M–H) at
three temperature settings. Model saturation (proportion of nonzero variables in model) as function of algorithm
iterations. The solid lines are the mean of N = 100 chains, while the shaded regions are the middle 95% of the
chains. The online version of this figure is in color.
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4.2 MIXTURE MODELING

Mixture models provide a challenging case of multimodality, due partly to the complexity
of the model and partly to a phenomenon called “label switching” (see, e.g., Frühwirth-
Schnatter (2006) for a book covering Bayesian inference for these models, Diebolt and
Robert (1994) and Richardson and Green (1997) for seminal articles using MCMC for
mixture models, and Stephens (2000) and Jasra, Holmes, and Stephens (2005) on the label
switching problem). Articles describing explorative MCMC algorithms often take these
models as benchmarks, as, for example, population MCMC and SMC methods in Jasra,
Stephens, and Holmes (2007), the Wang–Landau algorithm in Atchadé and Liu (2010),
free energy methods in Chopin, Lelievre, and Stoltz (2012) and Chopin and Jacob (2010),
and parallel tempering with equi-energy moves in Baragatti, Grimaud, and Pommeret
(2012).

Consider a Bayesian Gaussian mixture model, that is, for i = 1, . . . n,

p(yi |q, µ, λ) =
K∑

k=1

qk ϕ
(
yi ; µk, λ

−1
k

)
,

where ϕ is the probability density function of the Gaussian distribution, K is the number
of components, qk , µk , and λk are, respectively, the weight, the mean, and the precision
of component k. The component index k is also called its label. Following Richardson and
Green (1997), the prior is taken as, for k = 1, . . . , K ,

µk ∼ N(M, κ−1), λk ∼ Gamma(α, β),

β ∼ Gamma(g, h), (q1, . . . , qK−1) ∼ DirichletK (1, . . . , 1),

with, for example, κ = 4/R2, α = 2, g = 0.2, h = 100g/αR2, M = ȳ, R = range (y).
The invariance of the likelihood to permutations in the labeling of the components

leads to the “label switching” problem: since there are K! possible permutations of the
labels, each mode has necessarily K! − 1 replicates. We emphasize that this model has
been thoroughly studied and is hence well-understood from a modeling point of view, but
it still induces a computationally challenging sampling problem for which difficulty can be
artificially increased through the number of components K.

Note that in this parameterization β, the rate of the Gamma prior distribution of the
precisions λk is estimated along with the parameters of interest q1:K−1, µ1:K , and λ1:K .
Chopin, Lelievre, and Stoltz (2012) and Chopin and Jacob (2010) suggested that β can be
used as a reaction coordinate, since a large value of β results in a small precision and hence
in a flatter posterior distribution of the other parameters, which is easier to explore than
the distribution associated with smaller values of β; we refer to these articles for further
exploration of this choice of reaction coordinate, and instead default to ξ (x) = − log π (x).

We create a synthetic 100-sample from a Gaussian mixture with k = 4 components,
weights 1/4, means −3, 0, 3, 6, and variances 0.552 as in Jasra, Holmes, and Stephens
(2005). The goal is to explore the highly multimodal posterior distribution of the 13-
dimensional parameter θ = (w1:4, µ1:4, λ1:4,β), where wk is the unnormalized weight:
qk = wk/

∑K
k=1 wk . Unnormalized weights may be handled straightforwardly in MCMC

algorithms since they are defined on R+ and not on the K-simplex as with the qk .
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The proposed algorithm is compared with an SMC and a parallel adaptive Metropolis–
Hastings (PAMH) algorithm, that we detail below. We admittedly use naive versions of these
competitors, arguing that most improvements of these could be carried over to PAWL. For
instance, a mixture of Markov kernels as suggested for the SMC algorithm in Section 3.2
of Jasra, Stephens, and Holmes (2007) can be used in the proposal distribution of PAWL;
and since PAWL is a population MCMC algorithm, exchange and crossover moves could
be used as well, as suggested for the Population SAMC algorithm in Liang and Wu (2011).
To get a plausible range of values for the reaction coordinate of the proposed algorithm
without user input, an initial adaptive MCMC algorithm is run with N = 10 chains and
T init = 1000 iterations. The initial points of these chains are drawn from the prior distribu-
tion of the parameters. This provides a range of log density values, from which we compute
the 10% and 90% empirical quantiles, denoted by q10 and q90, respectively. In a conser-
vative spirit, the bins are chosen to equally divide the interval [q10, q10 + 2(q90 − q10)] in
20 subsets. Hence, the algorithm is going to explore log density values in a range that is
approximately twice as large as the values initially explored. Note that we use quantiles
instead of minimum and maximum values to make the method more robust.

Next, PAWL itself is run for T = 200,000 iterations, starting from the terminal points
of the N preliminary chains, resulting in a total number of N (T + Tinit) target density
evaluations. In this situation, even with only 100 data points, most of the computational
cost goes into the evaluation of the target density. This confirms that algorithmic parameters
such as the number of bins do not significantly affect the overall computational cost, at
least as long as the target density is not extremely cheap to evaluate. The adaptive proposal
is such that it targets an acceptance rate of 23.4%. Meanwhile, the PAMH algorithm using
the same adaptive proposal is run with N = 10 chains and T ∗ = 250,000 iterations, hence
relying on more target density evaluations for a comparable computational cost.

Finally, the SMC algorithm is run on a sequence of tempered distribution (πk)Kk=1, each
density being defined by

πk(x) ∝ πζk (x)p1−ζk

0 (x),

where p0 is an initial distribution (here taken to be the prior distribution), and ζk = k/K . The
number of steps K is set to 100 and the number of particles to 40,000. When the effective
sample size goes below 90%, we perform a systematic resampling and five consecutive
M–H moves. We use a random walk proposal distribution, in which variance is taken to
be c,̂, where ,̂ is the empirical covariance of the particles and c is set to 10%; see Jasra,
Stephens, and Holmes (2007) for more details. The parameters are chosen to induce a
computational cost comparable to the other methods. However, for the SMC sampler, the
number of target density evaluations is a random number, since it depends on the random
number of resampling steps: the computational cost is in general less predictable than using
MCMC.

First, we look at graphical representations of the generated samples. Figure 5 shows
the resulting points projected on the (µ1, µ2) plane, restricted on [−5, 9]2. In this plane,
there are 12 replicates of each mode, indicated by target symbols in Figure 5(a). These
projections do not allow one to check that all the modes were visited since they project the
13-dimensional target space on a two-dimensional space. Figure 5(b) shows that the adaptive
MCMC method clearly misses some of the modes, while visiting many others. Figure 5(c)
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Figure 5. Mixture model example: exploration of the posterior distribution projected on the µ1, µ2 plane,
using different algorithms. (a) Locations of the global modes of the posterior distribution projected on (µ1, µ2).
(b) Projection of the chains generated by the parallel adaptive M–H algorithm on (µ1, µ2). (c) Projection of
the chains generated by PAWL on (µ1, µ2). (d) Projection of the particles generated by the SMC algorithm on
(µ1, µ2). The online version of this figure is in color.

shows how the chains generated by the modified Wang–Landau algorithm easily explore
the space of interest, visiting both global and local modes. To recover the main modes
from these chains, we use the final value of the bias, θT , as importance weights to correct
for the bias induced by the algorithm; in Figure 5(c), the importance weights define the
transparency of each point: the darker the point, the more weight it has. Finally, Figure 5(d)
shows how the SMC sampler also put particles in each mode; again the transparency of the
points is proportional to their weights.

We now turn to more quantitative measures of the error made on marginal quantities.
Since the component means admit four identical modes around −3, 0, 3, and 6, we know
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Table 1. Estimation of the means of the mixture components, for the proposed method (PAWL), parallel adaptive
Metropolis–Hastings (PAMH), and sequential Monte Carlo (SMC), using the prior as initial distribution. Quantities
averaged over 10 independent runs for each method

Method µ1 µ2 µ3 µ4 Error Time (sec)

PAWL 1.42 ± 0.99 1.42 ± 0.58 1.39 ± 0.90 1.75 ± 0.78 1.50 ± 0.59 209 ± 1
PAMH 1.58 ± 0.81 1.25 ± 0.72 1.04 ± 1.07 2.09 ± 1.00 1.75 ± 0.80 233 ± 1
SMC 1.00 ± 1.96 2.99 ± 1.38 0.92 ± 2.27 1.10 ± 2.11 3.89 ± 1.34 269 ± 7

that their overall mean is approximately equal to µ∗ = 1.5. We then compute the following
error measurement:

error =

√√√√
K∑

k=1

(µ̂k − µ∗)2,

where µ̂k is the mean of the generated sample (taking the weights into account for PAWL
and SMC). Table 1 shows the results averaged over 10 independent runs: the means of
each component, the error defined above and the (wall-clock) run times obtained using the
same CPU, along with their standard deviations. The results highlight that in this context
PAWL gives more precise results than SMC, for the same or less computational cost;
the comparison between parallel MCMC and SMC confirms the results obtained in Jasra,
Stephens, and Holmes (2007). The small benefit of PAWL over PAMH can be explained
by considering the symmetry of the posterior distribution: even if some modes are missed
by PAMH as shown in Figure 5(b), the approximation of the posterior expectation might
be accurate, though the corresponding variance will be higher.

Next, we consider a more realistic setting, where the initial distribution is not well
spread over the parameter values: instead of taking the prior distribution itself, we use a
similar distribution but with an hyperparameter κ equal to 1 instead of 4/R2, which for
our simulated dataset is equal to 0.03. This higher precision makes the initial distribution
concentrated on a few modes, instead of being fairly flat over the whole region of interest.
We keep the prior unchanged, so that the posterior is left unchanged. For PAWL and PAMH,
this means that the initial points of the chains are all close one to another; and likewise for
the initial particles in the SMC sampler. The results are shown in Table 2, and illustrate
the degeneracy of SMC when the initial distribution is not well-chosen; though this is not
surprising, this is important in terms of exploratory algorithms when one does not have
prior knowledge of the region of interest. Both parallel MCMC methods give similar results
as with the previous, flatter initial distribution.

Table 2. Estimation of the means of the mixture components, for the proposed method (PAWL), PAMH, and
SMC, using a concentrated initial distribution. Quantities averaged over 10 independent runs for each method

Method µ1 µ2 µ3 µ4 Error Time

PAWL 1.16 ± 0.75 2.04 ± 0.50 1.72 ± 0.80 1.07 ± 1.22 1.48 ± 1.10 210 ± 1
PAMH 1.37 ± 0.73 1.48 ± 1.39 1.71 ± 0.81 1.44 ± 1.11 1.75 ± 1.01 234 ± 1
SMC 0.35 ± 2.13 0.82 ± 1.55 3.19 ± 2.41 1.62 ± 1.85 4.17 ± 1.41 337 ± 8
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Table 3. Estimation of the means of the mixture components, for the proposed method (PAWL), for different
values of N, the number of chains, and T , the number of iterations. Quantities averaged over 10 independent runs
for each set of parameters

Parameters µ1 µ2 µ3 µ4 Error Time

N = 1 0.37 ± 3.46 2.01 ± 3.27 2.53 ± 3.04 0.95 ± 3.46 6.39 ± 1.30 265 ± 40
T = 5 × 105

N = 10 1.42 ± 0.99 1.42 ± 0.58 1.39 ± 0.90 1.75 ± 0.78 1.50 ± 0.59 209 ± 1
T = 2 × 105

N = 50 1.51 ± 0.88 1.5 ± 0.9 1.65 ± 0.64 1.31 ± 0.31 1.22 ± 0.69 178 ± 2
T = 5 × 104

Finally, we compare different algorithmic settings for the PAWL algorithm, changing the
number of chains and the number of iterations. The results are shown in Table 3. First, we
see that, even on a single CPU, the computing time is not exactly proportional to N × T , the
number of target density evaluation. Indeed, the computations are vectorized by iteration,
and hence it is typically cheaper to compute one iteration of N chains than N iterations of
one chain; although this would not hold for every model. We also see that the algorithm
using only one chain failed to explore the modes, resulting in a huge final error. Finally,
we see that with 50 chains and only 50,000 iterations, the algorithm provides results of
approximately the same precision as with 10 chains and 200,000 iterations. This suggests
that the algorithm might be particularly interesting if parallel processing units are available,
since the computational cost would then be much reduced.

4.3 SPATIAL IMAGING

We finish our examples by identifying ice floes from polar satellite images as described in
Banfield and Raftery (1992). Here, the image under consideration is a 200 by 200 grayscale
satellite image, with focus on a particular 40 by 40 region (y, Figure 6); the goal is to identify

Figure 6. Spatial model example: (a) original ice floe image with highlighted region and (b) close-up of focused
region. The online version of this figure is in color.
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the presence and position of polar ice floes (x). Toward this goal, Higdon (1998) employed
a Bayesian model. Basing the likelihood on similarity to the image and employing an Ising
model prior, the resulting posterior distribution is

log(π (x|y)) ∝ α
∑

i

I [yi = xi] + β
∑

i∼j

I [xi = xj ].

The first term, the likelihood, encourages states x that are similar to the original image y.
The second term, the prior, favors states x for which neighboring pixels are equal. Here,
neighborhood (∼) is defined as the eight vertical, horizontal, and diagonal adjacencies of
each (interior) pixel.

Because the prior strongly prefers large blocks of identical pixels, an MCMC method
that proposes to flip one pixel at a time will fail to explore the posterior, and hence Higdon
(1998) suggested a partial decoupling technique specific to these types of models. However,
to demonstrate PAWL’s power and universality, we demonstrate its ability to make simple
one-at-a-time M–H feasible in these models without more advanced decoupling methods.

First running a preliminary M–H algorithm of length 20,000, we use the range of
explored energy values divided evenly across 10 bins. The algorithm subsequently splits
bins six times (with splitting stopped once the algorithm reaches the extremes of the reaction
coordinate values) resulting in 17 bins at the algorithm’s conclusion. For both algorithms,
we run 10 chains for 1,000,000 iterations with model parameters α = 1, β = 0.7. Due to
the flip-one-pixel approach, we suppress adaptive proposals for this example. In contrast to
the mixture modeling example, in this example the target density is fairly straightforward
to calculate, so it is a good worst-case comparison to demonstrate the additional time taken
by the proposed algorithm. For this example, the M–H algorithm took 388 ± 21 sec across
10 runs, whereas PAWL required 478 ± 24 sec. Thus, in this case the Wang–Landau adds
a 23% price to each iteration on average. However, as we will show, the exploration is
significantly better, justifying the slight additional cost. Figure 7 shows a subset of the
last 400,000 posterior realizations from one chain of each algorithm. We see that the
proposed Wang–Landau algorithm encourages much more exploration of alternate modes.
The corresponding average state explored over all 10 chains (after 400,000 burn-in) is

Figure 7. Spatial model example: states explored over 400,000 iterations for M–H (top) and proposed algorithm
(bottom).
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Figure 8. Spatial model example: average state explored with M–H (left) and PAWL after importance sampling
(right).

shown in Figure 8. From this, we see that Wang–Landau induces exploration of the mode
in the top left of the region in question, as well as a bridge between the central ice floes. In
conclusion, while flip-one-pixel M–H is incapable of exploring the modes in the posterior
caused by the presence/absence of large ice floes, the proposed algorithm encourages
exploration of these modes, even in the presence of high between-pixel correlation. While
Higdon (1998) developed a custom-tailored MCMC solution to overcome the inability of
M–H to adequately explore the posterior density in Ising models, we employ PAWL—a
general-purpose automatic density exploration algorithm—to achieve similar results.

5. DISCUSSION AND CONCLUSION

The proposed algorithm, PAWL, has at its core the Wang–Landau algorithm that, despite
widespread use in the physics community, has only recently been introduced into the
statistics literature. A well-known obstacle in implementing the Wang–Landau algorithm
is selecting the bins through which to discretize the state-space; in response, we have
developed a novel adaptive binning strategy. Additionally, we employ an adaptive proposal
mechanism to further reduce the amount of user-defined parameters. Finally, to improve the
convergence speed of the algorithm and to exploit modern computational power, we have
developed a parallel interacting chain version of the algorithm, which proves efficient in
stabilizing the algorithm. Through a host of examples, we have demonstrated the algorithm’s
ability to conduct density exploration over a wide range of distributions continuous and
discrete. While a suite of custom-purpose MCMC tools exists in the literature for each of
these models, the proposed algorithm handles each within the same unified framework.

As practitioners in fields ranging from image-processing to astronomy turn to increas-
ingly complex models to represent intricate real-world phenomena, the computational tools
to approximate these models must grow accordingly. In this article, we have proposed
a general-purpose algorithm for automatic density exploration. Due to its fully adaptive
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nature, we foresee its application as a black-box exploratory MCMC method aimed at
practitioners of Bayesian methods. While statisticians are well-accustomed to performing
exploratory analysis in the modeling stage of an analysis, the notion of conducting prelimi-
nary general-purpose exploratory analysis in the Monte Carlo stage (or more generally, the
model-fitting stage) of an analysis is an area that we feel deserves much further attention.
As models grow in complexity and endless model-specific Monte Carlo methods are pro-
posed, it is valuable for the practitioner to have a universally applicable tool to throw at their
problem before embarking on custom-tuned, hand-built Monte Carlo methods. Toward this
aim, the authors have published an R package (“PAWL”) to minimize user effort in applying
the proposed algorithm to their specific problem.

APPENDIX: DETAILS OF PROPOSED ALGORITHM

Here, we detail PAWL, fusing together a Wang–Landau base with adaptive binning, interacting
parallel chains, and an adaptive proposal mechanism. In comparison with the generalized Wang–
Landau algorithm (Algorithm 2), when a flat histogram is reached, the distribution of particles within
bins is tested to determine whether a given bin should be split. In addition, a suite of N interacting
chains is employed, and hence the former chain X t is now made of N chains: X t = (X(1)

t , . . . , X
(N )
t ),

each defined on the state space X . All the N chains are used to update the bias θt , as described in
Section 3.3.

The chains are moved using an adaptive mechanism determined by the M–H acceptance rate as
explained in Section 3.4. While we present Algorithm 3 with adaptive proposal variance, it may also
be implemented with an adaptive mixture proposal as described in Section 3.4. Note that when a
bin is split, it is possible to set the desired frequency of the new bins to some reduced value, say
each obtaining half the desired frequency of the original—in fact in the numerical experiments we
do exactly that. However, for notational and pedagogical simplicity, we present here the algorithm
where the desired frequency of each bin is equal to 1/dt at iteration t.

A.1 ALGORITHM PSEUDOCODE

Algorithm 3 Proposed Density Exploration Algorithm
1: Run a preliminary exploration of the target, e.g., using adaptive MCMC, and determine an energy

range.
2: Partition the state space into d0 regions {X1,0, . . . ,Xd0,0} along a reaction coordinate ξ (x),

the default choice being ξ (x) = − log π (x).
3: ∀i ∈ {1, . . . , d0} set θ (i) ← 1, ν(i) ← 0.
4: Choose an initial proposal standard deviation σ0.

5: Choose the frequency τ with which to check for a flat histogram.
6: Choose a decreasing sequence {ρt }, typically ρt = 1/t , to update the proposal standard deviation.
7: Choose a decreasing sequence {γk}, typically γk = 1/k, to update the bias.
8: Sample X0 ∼ π0, an initial distribution.
9: for t = 1 to T do

10: Sample X t from Pθt−1 (X t−1, ·), a transition kernel with invariant distribution
∏N

n=1 π̃θt−1 (x),
parameterized by the proposal standard deviation σt−1.

11: Update the proposal standard deviation: σt ← σt−1 + ρt (2I(A > 0.234) − 1),
where A is the last acceptance rate.

12: Set dt ← dt−1.
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13: Update the proportions: ∀i ∈ {1, . . . , dt } ν(i) ← 1
t

[
(t − 1)ν(i) + N−1 ∑N

j=1 IXi,t
(X(j )

t )
]
.

14: Every τ th iteration, check the distribution of samples within each bin, extending the range if
necessary. For example, if ξ (x) = − log π (x) and a new minimum value of ξ (x) was found,
extend the first bin to include this value.

15: for i ∈ {1, . . . , dt } do
16: if bin i should be split then
17: Create two sub-bins covering bin i, assign to each a weight equal to θt (i)/2.
18: Set dt ← dt + 1, extend ν.
19: end if
20: end for
21: if “flat histogram”: maxi∈{1,...,dt } |ν(i) − dt

−1| < c/d then
22: Set k ← k + 1.
23: Reset ∀i ∈ {1, . . . , dt } ν(i) ← 0.
24: end if
25: Update the bias: log θt (i) ← log θt−1(i) + γk(N−1 ∑N

j=1 IXi,t
(X(j )

t ) − d−1
t ).

26: Normalize the bias: θt (i) ← θt (i)/
∑dt

i=1 θt (i).
27: end for

Discussion of algorithm convergence is provided as supplementary material.

SUPPLEMENTARY MATERIALS

Tri-modal example: Additional continuous, trimodal example, which demonstrates bin-
splitting mechanism and further suggestions for algorithm tuning. (SupplementaryMa-
terials.pdf)

Algorithm convergence: Discussion of related algorithms as well as the algorithm’s con-
vergence. (Supplementary Materials.pdf)

R Package: Code and data to reproduce all results and test the method more generally.
(PAWL.zip)
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Frühwirth-Schnatter, S. (2006), Finite Mixture and Markov Switching Models, New York: Springer Verlag. [763]

Geyer, C. (1991), “Markov Chain Monte Carlo Maximum Likelihood,” in Proceedings of the 23rd Symposium on
the Interface, ed. E. Keramigas, Fairfax, VA: Interface Foundations, pp. 156–163. [751]

Guan, Y., and Krone, S. (2007), “Small-World MCMC and Convergence to Multi-Modal Distributions: From
Slow Mixing to Fast Mixing,” The Annals of Applied Probability, 17, 284–304. [759]

Haario, H., Saksman, E., and Tamminen, J. (2001), “An Adaptive Metropolis Algorithm,” Bernoulli, 7, 223–242.
[752]

Higdon, D. (1998), “Auxiliary Variable Methods for Markov Chain Monte Carlo With Applications,” Journal of
the American Statistical Association, 93, 585–595. [752,768]

Jasra, A., Holmes, C. C., and Stephens, D. A. (2005), “MCMC and the Label Switching Problem in Bayesian
Mixture Models,” Statistical Science, 20, 50–67. [763]

Jasra, A., Stephens, D., and Holmes, C. (2007), “On Population-Based Simulation for Static Inference,” Statistics
and Computing, 17, 263–279. [763,764,766]

Kou, S., Zhou, Q., and Wong, W. (2006), “Equi-Energy Sampler With Applications in Statistical Inference and
Statistical Mechanics,” The Annals of Statistics, 34, 1581–1619. [751,752,757]

Lee, A., Yau, C., Giles, M., Doucet, A., and Holmes, C. (2010), “On the Utility of Graphics Cards to Perform
Massively Parallel Simulation of Advanced Monte Carlo Methods,” Journal of Computational and Graphical
Statistics, 19, 769–789. [758]

Liang, F. (2005), “A Generalized Wang-Landau Algorithm for Monte Carlo Computation,” Journal of the American
Statistical Association, 100, 1311–1327. [751]

——— (2009), “Improving SAMC Using Smoothing Methods: Theory and Applications to Bayesian Model
Selection Problems,” The Annals of Statistics, 37, 2626–2654. [758]

 



AN ADAPTIVE INTERACTING WANG–LANDAU ALGORITHM 773

Liang, F., Liu, C., and Carroll, R. (2007), “Stochastic Approximation in Monte Carlo Computation,” Journal of
the American Statistical Association, 102, 305–320. [758]

Liang, F., and Wu, M. (2011), “Population Stochastic Approximation MCMC Algorithm and its Weak Conver-
gence,” Technical Report 2011-201, Texas A& M University. [758,764]

Marin, J., and Robert, C. (2007), Bayesian Core: A Practical Approach to Computational Bayesian Statistics,
New York: Springer-Verlag. [761]

Marinari, E., and Parisi, G. (1992), “Simulated Tempering: A New Monte Carlo Scheme,” EPL (Europhysics
Letters), 19, 451–458. [751]

McDonald, G., and Schwing, R. (1973), “Instabilities of Regression Estimates Relating Air Pollution to Mortality,”
Technometrics, 15, 463–481. [760]

Neal, R. (2001), “Annealed Importance Sampling,” Statistics and Computing, 11, 125–139. [751]

——— (2003), “Slice Sampling,” The Annals of Statistics, 31, 705–741. [752]

Niederreiter, H. (1992), Random Number Generation and Quasi-Monte Carlo Methods, Philadelphia, PA: Society
for Industrial Mathematics. [756]

R Development Core Team (2010), R: A Language and Environment for Statistical Computing, Vienna, Austria:
R Foundation for Statistical Computing. [771]

Richardson, S., and Green, P. J. (1997), “On Bayesian Analysis of Mixtures With an Unknown Num-
ber of Components” (with discussion), Journal of the Royal Statistical Society, Series B, 59, 731–
792. [763]

Robert, C., and Casella, G. (2004), Monte Carlo Statistical Methods, New York: Springer. [750]

Roberts, G., Gelman, A., and Gilks, W. (1997), “Weak Convergence and Optimal Scaling of Random Walk
Metropolis Algorithms,” The Annals of Applied Probability, 7, 110–120. [759]

Roberts, G., and Rosenthal, J. (2009), “Examples of Adaptive MCMC,” Journal of Computational and Graphical
Statistics, 18, 349–367. [759]

Schmidler, S. (2011), “Exploration vs. Exploitation in Adaptive MCMC,” Adap’ski Invited Presentation. Available
at http://www.maths.bris.ac.uk/∼maxca/adapsklll/schmidler.html [750,756,760]

Stephens, M. (2000), “Dealing With Label Switching in Mixture Models,” Journal of the Royal Statistical Society,
Series B, 62, 795–809. [763]

Suchard, M., and Rambaut, A. (2009), “Many-Core Algorithms for Statistical Phylogenetics,” Bioinformatics, 25,
1370–1376. [758]

Swendsen, R., and Wang, J. (1986), “Replica Monte Carlo Simulation of Spin-Glasses,” Physical Review Letters,
57, 2607–2609. [751]

——— (1987), “Nonuniversal Critical Dynamics in Monte Carlo Simulations,” Physical Review Letters, 58,
86–88. [752]

Wang, F., and Landau, D. (2001a), “Determining the Density of States for Classical Statistical Models: A Random
Walk Algorithm to Produce a Flat Histogram,” Physical Review E, 64, 56101. [751,752,755]

——— (2001b), “Efficient, Multiple-Range Random Walk Algorithm to Calculate the Density of States,” Physical
Review Letters, 86, 2050–2053. [751,752,755]

Wei, W., Erenrich, J., and Selman, B. (2004), “Towards Efficient Sampling: Exploiting Random Walk Strategies,”
in Proceedings of the National Conference on Artificial Intelligence, Menlo Park, CA: AAAI Press, pp.
670–676. [753]

Welford, B. (1962), “Note on a Method for Calculating Corrected Sums of Squares and Products,” Technometrics,
4, 419–420. [759]

Wickham, H. (2009), ggplot2: Elegant Graphics for Data Analysis, New York: Springer. [771]

Zellner, A. (1986), “On Assessing Prior Distributions and Bayesian Regression Analysis With G-Prior Distribu-
tions,” in Bayesian Inference and Decision Techniques: Essays in Honor of Bruno do Dinetti, eds. P. Goel
and A. Zellner, Amsterdam: North-Holland, pp. 233–243. [761]

 


	An Adaptive Interacting Wang&ndash;Landau Algorithm for Automatic Density Exploration
	INTRODUCTION
	EXPLORATORY ALGORITHMS
	Ability to Cross Low-Density Barriers
	Adaptive Proposal Mechanism

	PROPOSED ALGORITHM
	The Wang&ndash;Landau Algorithm
	A Novel Adaptive Binning Strategy
	Parallel Interacting Chains
	Adaptive Proposal Mechanism
	Using the Output to Perform Inference

	APPLICATIONS
	<0:i >g</0:i>@empty -Prior Variable Selection
	Mixture Modeling
	Spatial Imaging

	DISCUSSION AND CONCLUSION
	APPENDIX: DETAILS OF PROPOSED ALGORITHM
	Algorithm Pseudocode





