
© 2018 Royal Statistical Society 1369–7412/19/81005

J. R. Statist. Soc. B (2019)
81, Part 1, pp. 5–43

Moment conditions and Bayesian non-parametrics

Luke Bornn,

Simon Fraser University, Burnaby, Canada

and Neil Shephard and Reza Solgi

Harvard University, Cambridge, USA

[Received January 2016. Final revision August 2018]

Summary. Models phrased through moment conditions are central to much of modern infer-
ence. Here these moment conditions are embedded within a non-parametric Bayesian set-up.
Handling such a model is not probabilistically straightforward as the posterior has support on
a manifold. We solve the relevant issues, building new probability and computational tools by
using Hausdorff measures to analyse them on real and simulated data. These new methods,
which involve simulating on a manifold, can be applied widely, including providing Bayesian
analysis of quasi-likelihoods, linear and non-linear regression, missing data and hierarchical
models.
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1. Introduction

1.1. Overview
Much of modern inference is phrased in terms of moment conditions and analysed by using
asymptotic approximations. Here moment conditions are embedded within a non-parametric
Bayesian set-up, allowing an individual to mix moment conditions with data and informative
priors to make rational decisions without the recourse to the veil of parametric assumptions or
asymptotics.

Embedding moments within non-parametrics is not straightforward. This paper spells out
the issues, develops the corresponding probability theory to solve them and devises strategies
for simulating on a manifold to implement.

The range of the new methods is large. It deals with, for example, linear, non-linear and
instrumental variable (IV) regression. By thinking of the moment condition as the score of a
parametric statistical model, our analysis also provides a Bayesian treatment of quasi-likelihood
methods which are widely applied in statistics (e.g. Cox (1961) and White (1994)). Finally, this
framework provides a basis to deal systematically with missing data (e.g. Little and Rubin
(2002)), to shrink parameters (e.g. Efron (2012)) and to build hierarchical models (e.g. Gelman
et al. (2003)).

1.2. The conceptual challenge
To help to place this paper in the context of the literature we establish some notation; a formal
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statement will appear in Section 2. Assume that the independent and identically distributed
(IID) d-dimensional data Zi, i = 1, 2, : : : , n, take on the known support s1, s2, : : : , sJ and have
distribution function F . Then write P.Zi = sj|θ,β/=θj where the p-dimensional β satisfies the
r-dimensional moment condition

EZ[g.Z,β/]=
∫
g.z,β/ F.dz/=

J∑
j=1

θj g.sj,β/=0: .1/

Here β is the parameter of interest and is determined by θ, where θ= .θ1, θ2, : : : , θJ−1/′ (with
θJ = 1 − ι′θ, where ι is a vector of 1s) are non-parametric nuisance parameters. The task is to
learn p.β, θ|Z/ or p.β|Z/, where Z = .Z1, Z2, : : : , Zn/′.

A leading example of condition (1) would be where g.sj,β/ is the score vector for the jth
observation from a quasi-likelihood.

Although this problem is easy to state, it is not easily carried out, as traditional non-parametric
models clash with the moment conditions, overspecifying the model. Expressing this in a differ-
ent way, the prior and posterior for β and θ are typically supported on a zero Lebesgue measure
.J +p−1− r/-dimensional set, Θβ,θ, in RJ+p−1. As a result, traditional Markov chain Monte
Carlo (MCMC) methods (or alternatives like importance sampling) for sampling from p.β, θ|Z/

will fail. To the best of our knowledge this computational challenge in the context of moment
condition models was first raised and investigated by Kitamura and Otsu (2011). In this paper
we propose a radically different solution that relies on defining a prior on the zero Lebesgue
measure parameter space. The reader is referred to Morgan (2016) for additional measure
theoretic background. Further, this approach naturally extends to the case where the support is
unknown, which will be detailed in Section 3.7.

1.3. Literature on classical analysis of moments
Here we discuss how this work relates to the literature. Moment-based estimation was intro-
duced by Pearson (1894). A relatively modern version of this procedure first estimates θ̂ non-
parametrically, i.e. F by the empirical distribution function Fn, and then plugs it into condition
(1), yielding the function ∫

g.z,β/ Fn.dz/=
J∑

j=1
θ̂j g.sj,β/:

In the p = r case we move β around until this function equals a vector of 0s, delivering the
method-of-moments estimator β̂. Extensions include, for example, Sargan (1958, 1959), Durbin
(1960), Godambe (1960), Wedderburn (1974), McCullagh and Nelder (1989), Hansen (1982),
Chamberlain (1987), Hansen et al. (1996), Gallant and Tauchen (1989, 1996) and Gourieroux
et al. (1993). Hall (2005) gives a review.

An elegant implementation of moment-based inference is through empirical likelihood. Mo-
tivated by Owen (1988, 1990), Qin and Lawless (1994) and Imbens et al. (1998) discussed
empirical-likelihood-based inference in overidentified moment condition models. See also the
reviews by Owen (2001), Kitamura (2007) and Lancaster and Jun (2010).

1.4. Literature on Bayesian analysis of moments
Our work is fully Bayesian. Much of our work has been inspired by Chamberlain (1987) and
Chamberlain and Imbens (2003). Chamberlain and Imbens (2003) placed a Dirichlet prior on θ,
which implies that the posterior on θ is Dirichlet. These priors and posteriors are straightforward
to sample from by using the Bayesian bootstrap. Chamberlain and Imbens (2003) suggested that
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for each posterior draw of θ they would solve the moment conditions to imply a value (or in
principle a set of values) of β. Collecting a sample of such solved values provides a sample from
a posterior on β, which is the parameter of scientific interest. For instance in the IV example
of Chamberlain and Imbens (2003), β is a vector with two elements: average earnings in the
subpopulation with no schooling at all, and the return to schooling. Unfortunately they had no
control over the prior for the parameter of interest β.

Also important is Kitamura and Otsu (2011), who had two methods, both expressed in terms
of Dirichlet process priors. Here we convert them into our framework. In their exponentially
tilted case they first specified a prior p.β/p.θ/ before finding θÅ = .θÅ1 , θÅ2 , : : : , θÅJ / which mini-
mizes ΣJ

j=1θ
Å
j log.θÅj =θj/ subject to the moment constraints ΣJ

j=1θ
Å
j g.sj,β/=0 and the proba-

bility axioms. They then set P.Zi = sj|θ,β/=θÅj , using this model to learn β and θ from the data.
Shin (2014) carefully investigated various computational aspects of this approach. Kitamura
and Otsu (2011) also proposed a synthetic Dirichlet process (with connections to Doss (1985)
and Newton et al. (1996)).

Alternative methods include the Bayesian use of moments through approximate methods.
Chernozhukov and Hong (2003) specified a quadratic form in the moment conditions and used
this as the basis of a log-quasi-likelihood function. They then used this approximate likelihood
to carry out Bayesian inference using MCMC sampling alongside a sandwich estimator. Related
work includes Yin (2009). Muller (2013) provided a Bayesian version of the asymptotic sandwich
matrix that is commonly seen in quasi-likelihood inference and linked it to decision theory.

Lazar (2003), Schennach (2005) and Yang and He (2012) provided Bayesian interpretations
to empirical likelihood and studied the resulting properties. Mengersen et al. (2013) looked
at moment conditions and empirical likelihood by using approximate Bayesian computation.
See also Zellner (1997) and Zellner et al. (1997). Related is the Bayesian work on factor and
cointegration models, e.g. Strachan and van Dijk (2004).

In a series of papers Gallant and Hong (2007), Gallant et al. (2014) and Gallant (2015) devel-
oped methods which devise a likelihood by using fiducial arguments from moment conditions.
Related work includes Jaynes (2003) and Kwan (1998). Florens and Simoni (2015) have used
Gaussian processes in combination with moment constraints to carry out Bayesian inference.

In a similar setting to our problem, Kessler et al. (2015) proposed the marginally specified
prior. In their model, an initially chosen non-parametric prior is modified in such a way that its
β-marginal coincides with an informative prior distribution. Despite its mathematical elegance,
sampling from its posterior distribution is not straightforward, unless the density function of the
marginal of β for the initially chosen prior is known. They showed how an estimate (e.g. a kernel
density estimate) of this density function can be employed in an approximative sampling scheme
to sample from the posterior distribution. Estimating β’s marginal could become challenging for
moderate dimensions of β or complicated moment conditions (for instance the causal inference
example that is presented in Section 6.2).

1.5. Computational issues
Here the prior and posterior for β and θ are supported on a zero Lebesgue measure set Θβ,θ in
RJ+p−1. Hence Bayesian inference will require samples from a distribution defined on a zero
measure set, rendering standard Monte Carlo methods inadequate.

In an influential paper Gelfand et al. (1992) used MCMC methods to deal with constrained
parameter spaces, but there the constraints do not change the dimension of the support. Hurn
et al. (1999) carried out MCMC sampling in constrained parameter spaces (sampling from a
distributionπ.x/ subject to a constraint C.x/=0) by using block updating. Golchi and Campbell
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(2014) carried out sampling subject to constraints by using sequential Monte Carlo methods by
slowly introducing the constraints. However, they did not explore the change-of-measure issue
that we discuss here. Chiu (2008) used a singular normal distribution in posterior updating for an
underidentified hierarchical model. Related work includes Sun et al. (1999). Overspecified factor
models also have some of these features, as discussed by West (2003). Fiorentini et al. (2004)
faced related but highly specialized challenges when sampling missing data in a generalized
auto-regressive conditional heteroscedasticity model.

MCMC simulation from distributions defined on manifolds have been recently studied. Byrne
and Girolami (2013) introduced a Hamiltonian Monte Carlo algorithm for manifolds with
known geodesic structure. They used this for the distributions defined on hyperspheres and
Stiefel manifolds of orthonormal matrices. Diaconis et al. (2013) provided a short review of
concepts in geometric measure theory. They discussed sampling from distributions defined on
Riemannian manifolds that are similar to the ‘marginal method’ that will be introduced shortly.
Brubaker et al. (2012) proposed a Hamiltonian Monte Carlo algorithm on implicitly defined
manifolds. Numeric integration of the Hamiltonian dynamics requires solving a system of 3d

non-linear equations for each update, where d is the dimension of the space in which the manifold
is embedded (in our setting d = J + p − 1 and so is typically large). Statistical physicists have
studied a similar problem in molecular dynamic simulations. For instance Lelièvre et al. (2012)
developed a Hamiltonian Monte Carlo algorithm for distributions defined on submanifolds. See
also Hartmann and Schütte (2005a, b), Hartmann (2008) and Leimkuhler and Matthews (2016).
Implementation of this algorithm requires integrating the constrained Hamiltonian dynamics
that includes solving a system of p non-linear equations (see also Leimkuhler and Reich (2004)
and Lelièvre et al. (2010)). We detail the implementation of their algorithm to our problem.
Besides that, taking advantage of the specific characteristics of the problem, we propose two
other tailored solutions. The first algorithm, the marginal method, provides further insight into
the intellectual problem that is studied here and suggests an importance sampling algorithm.
In the second sampling algorithm, the joint method, we harness the special properties of the
submanifold of the parameters. This gives us a Metropolis–Hastings algorithm that does not
require solving for β.

1.6. Outline of the paper
In the next section of the paper we shall introduce the formal model under study and discuss
how one specifies meaningful prior distributions on the parameters of interest. In Section 3
several methods for inference and their relative merits and pitfalls are discussed. We also draw
out how to make inference when the support of the data is unknown in Section 3.7. Section 4
discusses mechanisms for generating priors for these models. This is followed by Section 5 in
which some illustrative examples are demonstrated. Section 6 explores several empirical studies
before Section 7 concludes. Appendix A collects the proofs and some additional results.

2. Bayesian analysis with moment conditions

2.1. The model
Assume that the data are Z = .Z1, : : : , Zn/, where the Zi are d-dimensional IID draws from an
unknown distribution which has J points of known support {s1, s2, : : : , sJ}= S. Throughout
we write

P.Zi = sj|θ,β/=θj, j =1, 2, : : : , J , .2/

with θ= .θ1, θ2, : : : , θJ−1/′ ∈Θθ ⊆ΔJ−1, where ΔJ−1 ={θ= .θ1, θ2, : : : , θJ−1/′; ι′θ < 1 and θj >
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0} for all j and θJ =1− ι′θ, in which ι is a vector of 1s. Our interest is learning β which solves
the r unconditional moment conditions

J∑
j=1

θj g.sj,β/=0, .3/

where β ∈ Θβ ⊆ Rp and g : Rd × Rp → Rr. Typically the scientific conclusions will centre on
inferences on β, although predictive-type inference may also additionally feature θ. This paper
concentrates on the case of exactly identified models (r =p). Appendix A.6 extends to the more
general case of overidentification and underidentification at the cost of more clutter but without
having to generate new ideas.

2.2. Parameter space and prior
Throughout β and θ must be learned from the data Z. We write the J +p−1 parameters

.β′, θ′/′ ∈Θβ,θ,

where Θβ,θ⊆Rp ×ΔJ−1 ⊂RJ+p−1, as the joint support for β and θ. Each point within Θβ,θ is a
pair .β, θ/ which satisfies both the moment conditions and the probability axioms. The moment
conditions are

Hβθ+gJ =0 Hβ = .g1, : : : , gJ−1/−gJ ι
′,

in which gj =g.sj,β/ (for 1�j�J). Moreover Hβ is assumed to be of full row rank (we shall often
suppress the dependence onβ and just write H). These constraints, together with the inequalities
θj � 0 (for j = 1, 2, : : : , J), implicitly define the .J − 1/-dimensional set of parameters within
RJ+p−1, which will be denoted by Θβ,θ, the set of admissible pairs .β, θ/. Hence the parameter
space Θβ,θ depends on the support of the data, S ={s1, : : : , sJ}, but is not data dependent.

Θβ,θ is a zero Lebesgue measure set in RJ+p−1. We shall assume that researchers can place a
prior density p.β, θ/ with respect to the .J −1/-dimensional Hausdorff measure on Θβ,θ. Using
the Hausdorff measure as the base measure, we can assign measures to the lower dimensional
subsets of R

J+p−1
, and therefore we can define probability density functions with respect to

Hausdorff measure on manifolds (and more complex zero Lebesgue measure sets) in a Euclidean
space. (Assume that E⊆Rn, d ∈ [0, ∞/ and δ∈ .0, ∞]. The Hausdorff premeasure of E is defined
as

Hd
δ .E/=vm inf

E⊆∪Ej

d.Ej/ < δ

∞∑
j=1

{
diam.Ej/

2

}d

where

vm = Γ. 1
2 /d

2dΓ.d=2+1/

is the volume of the unit d-sphere, and diam.Ej/ is the diameter of Ej. Hd
δ .E/ is a non-increasing

function of δ, and the d-dimensional Hausdorff measure of E is defined as its limit when δ→0,
Hd.E/ = limδ→0+ Hd

δ .E/. The Hausdorff measure is an outer measure. Moreover Hn defined
on Rn coincide with Lebesgue measure. See Federer (1969) for more details.)
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2.3. Some examples
To cement this we have built a starkly simple example which captures most of the challenges in
this problem. It faces off a non-parametric model against a parameter of interest.

2.3.1. Example (logistic)
Assume that Z1|θ∼Bernoulli.θ/, and letβ= log{θ=.1−θ/}= logit.θ/ be the scientific parameter
of interest. Jointly β and θ capture the inherent singularity that is implicit in all moment-based
inference. The moment condition is

g.s,β/= s− exp.β/

1+ exp.β/
:

Therefore the parameter space Θβ,θ is

Θβ,θ =
{

.β, θ/∈R× [0, 1];β= log
(

θ

1−θ

)}
:

This is shown as the blue curve sitting at ground level in Fig. 1(a). Of importance is that if θ
moves by dθ then the length along this curve will be (by Pythagoras’s theorem)

dθ
√

.1+J 2
θ /,

Jθ = @β

@θ
= @ log{θ=.1−θ/}

@θ
:

Fig. 1(b) repeats the support but now above it is a (the form of the density is not expositionally
important at this point) density p.β, θ/ with respect to this curve, or more formally the one-
dimension Hausdorff measure on Θβ,θ. Then, for any set C ⊂Θβ,θ,

Pr{.β, θ/∈C}=
∫

Cθ

p.β, θ/
√{

1+
(

@β

@θ

)2}
dθ,

where Cθ is the projection of C on θ’s axis (i.e. we integrate over all values of θ which imply a
β such that the pair .β, θ/ ∈ C). This means that, as we integrate over θ, we must multiply the
density on the curve by the length of the curve.

We shall study how to transform this prior p.β, θ/ into a posterior and to simulate from it.
This will enable us to learn β from the data. As with all Bayesian calculations, it is not trivial to
establish a widely acceptable prior p.β, θ/. We shall return to that practical issue in Section 4.

Before we leave this section we give a less artful example.

2.3.2. Example 2 (mean)
Let Z be a scalar random variable and g.s,β/= s−β, so β is a mean. Then

Θβ,θ =
{

.β, θ/;
J∑

j=1
θjsj =β, θj > 0 for all j, and ι′θ < 1

}
:

Thus Θβ,θ is a region within a .J −1/-dimensional hyperplane in RJ . However, all elements of
this set are not admissible, since θ should satisfy the probability axioms (elements of θ should
be positive and 1 − ι′θ> 0). Therefore the parameter space Θβ,θ is a convex subset on the
hyperplane. Then if θ moves by dθ1, : : : , dθJ−1 the area of the corresponding parallelogram on
the hyperplane is

dθ1: : : dθJ−1
√

.1+JθJ ′
θ/, Jθ =

{(
@β

@θ1

)
, : : : ,

(
@β

@θJ−1

)}
,

where @β=@θj = sj − sJ , j =1, 2, : : : , J −1. So, for any measurable set C ⊂Θβ,θ,
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Fig. 1. (a) βD log{θ=.1�θ/} ( ) is the parameter space of the logit model, Θβ,θ; (b) density of the
prior p.β, θ/ (with respect to Hausdorff measure); this density lives on the blue curve which supports Θβ,θ

Pr{.β, θ/∈C}=
∫

Cθ

p.β, θ/
√{

1+
J−1∑
j=1

(
@β

@θj

)2}
dθ

=
∫

Cθ

p.β, θ/
√{

1+
J−1∑
j=1

.sj − sJ /2
}

dθ

∝
∫

Cθ

p.β, θ/dθ,

where Cθ is the projection of C on θ. (The last proportionality is because the Jacobian depends
only on the support of the data.) Thus the linearity of the moment condition (that results in
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a flat parameter space Θβ,θ) translates into a somewhat trivial multiplicative correction factor
and so yields a simple relationship between Pr{.β, θ/∈C} and p.β, θ/.

2.3.3. Example 3 (regression)
The previous example can be generalized to the family of regression models. For instance con-
sider a linear regression model E[s.1/|s.2/]=β′s.2/, where s= .s.1/, s.2//, in which s.1/ is a scalar
and s.2/ is a d-dimensional vector, and β is a p-dimensional vector of parameters. The linear
regression parameters solve the following moment condition equation:

E[g.s,β/]=E[s.2/.s.1/ −β′s.2//]=0:

We can also discuss the estimation of linear regression models with IVs. Assume that s =
.s.1/, s.2/, s.3//, where s.1/ is a scalar, and s.2/ and s.3/ are p-dimensional vectors (independent and
IVs respectively). If we define g.s,β/= s.3/.s.1/ −β′s.2//, then β is the solution to E[g.s,β/]=0.
Moreover generalizing to the non-linear regression model is easy. Assume that E[s.1/|s.2/] =
μ.s.2/,β/. Then the corresponding moment condition equation is g.s,β/= s.2/{s.1/ −μ.s.2/,β/}.
For instance for a Poisson regression g.s,β/= s.2/{s.1/ − exp.β′s.2//}.

2.3.4. Example 4 (average treatment effect)
Consider a causal inference problem with the observational data Zj = .Xj, Yj, Wj/ (for 1 �
j � N), where Xj is the K-dimensional vector of the jth unit’s background variables, Yj is its
scalar outcome variable and Wj is the binary treatment indicator. Assuming superpopulation
unconfoundedness, it can be shown that (Imbens and Rubin, 2015) ESP[Yj.1/]=E[WjYj=e.Xj/]
and ESP[Yj.0/] = E[.1−Wj/Yj={1− e.Xj/}], where e.Xj/ is the propensity score, e.Xj/ = ηj =
Pr.Wj =1|Xj/. Therefore the average treatment effect (ATE) is

τ =ESP[Yj.1/]−ESP[Yj.0/]=E

[
WjYj

e.Xj/
− .1−Wj/Yj

1− e.Xj/

]
:

One might use a logistic regression model for the propensity score, ηj = exp.γ′Xj/={1 +
exp.γ′Xj/}, where γ is K dimensional. Under these assumptions the model’s parameters, β=
.γ, τ /, solve the following set of moment conditions:

E[g.Zj,β/]=E

[
Xj.Yj −ηj/

.Wj −ηj/Yj={ηj.1−ηj/}− τ

]
=0:

If we assume that the data points are realizations from a discrete distribution with finite and
known support S ={s1, : : : , sj}, Pr.Zi = sj/=θj, the moment conditions are

E[g.Zj,β/]=

⎛
⎜⎜⎝

J∑
j=1

θjXj.Yj −ηj/

J∑
j=1

θj.Wj −ηj/Yj={ηj.1−ηj/}− τ

⎞
⎟⎟⎠=0:

Thus the propensity scores and the ATE can be estimated jointly (e.g. McCandless et al. (2009),
Zigler et al. (2013) and Zigler and Dominici (2014)).
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3. Inference

3.1. Likelihood and posterior
Under the assumptions that were formulated above, the model’s likelihood is

L.Z|β, θ/∝
J∏

j=1
θ

nj

j ,

where nj =ΣN
i=11.Zi = sj/. Although β does not appear in the likelihood explicitly, because of

the constraints on β and θ, the data are informative about β.
The posterior is supported on the same set as the prior, Θβ, θ, and may be written as

p.β, θ|Z/∝p.β, θ/
J∏

j=1
θ

nj

j : .4/

The terms in expression (4) are easy to compute for any .β, θ/ in Θβ,θ, but the support is defined
implicitly.

3.2. Accessing the posterior
Inference can be carried out by sampling from the posterior distribution of the parameters.
However, the prior and the posterior of the model are supported on a zero Lebesgue measure
set, which makes the sampling problem challenging.

Here three solutions to this problem are given.
The first approach, which is called the ‘marginal method’, derives the density function of the

marginal of θ, which has a density with respect to the Lebesgue measure p.θ/ and therefore
can be processed by conventional Monte Carlo methods. Examples include standard MCMC
algorithms and importance sampling. This is simple but comes at the cost of having to solve for
β for each proposal. If finding β (or indeed all the values of β which solve given θ) is cheap then
this provides a very solid solution to the problem.

The second approach, which is called the ‘joint method’, defines a proposal in the space of
.β, θ/ that assigns positive probability to Θβ, θ (so, with positive probability, the proposed moves
remain on the submanifold Θβ,θ and will be accepted). A Metropolis–Hastings algorithm with
this proposal can efficiently move in the space. This does not require us to solve the moment
conditions at all, which is extremely attractive for difficult-to-solve moment condition models.

The third approach is the application of the constrained Hamiltonian Monte Carlo algorithm
of Lelièvre et al. (2012). Integrating the constrained Hamiltonian dynamics requires, at each
step, solving a system of non-linear equations.

3.3. Marginal method
Let p.β, θ/ be the density function of the model’s prior or posterior with respect to Hausdorff
measure on Θβ,θ. Proposition 1 gives the marginal density of θwith respect to Lebesgue measure.
This implies that standard Monte Carlo methods (e.g. MCMC, importance sampling, sequential
importance sampling and Hamiltonian Monte Carlo methods) can be used. (We sample from
the unconstrained p.η/, where ηj = log.θj+1=θj/, for j =1, : : : , J −1, with |@θ=@η|=ΠJ

j=1θj.)

Proposition 1. Let p.β, θ/ be the density function of the prior or posterior with respect to
Hausdorff measure supported on Θβ, θ. Moreover, assume that p= r (the ‘just-identified’ case)
and β is uniquely determined by θ, i.e. β=β.θ/. Then the density function of θ with respect to
Lebesgue measure is
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p.θ/=√|JθJ ′
θ + Ip| p.β, θ/, .5/

where

Jθ = @β

@θ′ =−Eθ

[
@g

@β′

]−1

Hβ , Hβ = .g1, : : : , gJ−1/−gJ ι
′, .6/

with ι being a .J −1/-vector of 1s and

Eθ

[
@g

@β′

]
=

J∑
j=1

θj
@g.sj,β/

@β′ :

This proposition is a direct result of the ‘area formula’ of Federer (1969) (see also Diaconis
et al. (2013)) and it can be generalized straightforwardly to the cases where for some values of
θ there are more than one β by summing over the right-hand side for each solution in β.

The Jacobian term
√|JθJ ′

θ + Ip| depends on the geometry of the parameter space Θβ,θ (in
other words, it depends only on the moment conditions) and is independent of p.β, θ/. To
compute this term we need to invert a p×p matrix and to evaluate the determinant of a p×p

matrix. However, p is usually modest, in which case the computational cost of these operations
is negligible. Similar correction terms appear in reversible jump MCMC (e.g. Green (1995))
and compressible generalized hybrid Monte Carlo methods (in which the dynamics need not
be volume preserving; see for instance Fang et al. (2014)). (In reversible jump MCMC sam-
pling the chain is allowed to jump between models with a different number of parameters.
However, there are (one-to-one) transformations operating between spaces of the same dimen-
sions, and the distributions in both spaces have densities with respect to Lebesgue measure.
In contrast, the Jacobian in proposition 1 corrects for a one-to-one mapping between two
different spaces and relates two densities that are defined with respect to different reference
measures.)

Importantly, knowledge of the functional form of β as a function of θ is not needed, since
the partial derivatives can be obtained by thinking of the moment condition g{θ,β.θ/} =
ΣJ

j=1θj g.sj,β/=0 and then using the implicit function theorem

@g

@θ′ + @β

@θ′
@g

@β′ =0:

However, to evaluate this density function for a given θ, we need its corresponding β. Although
in some problems β has a known analytic form as a function of θ, in many other situations
it can be obtained through a numeric optimization. We now return to the examples that were
introduced in Section 2.

3.3.1. Example 5 (continues example 1)
The density of θ in the logistic model is

p.θ/=p.β, θ/
√(

1+
[

@ log
{
θ=.1−θ/

}
@θ

]2)
: .7/

This moment condition impacts the marginal prior on θ. Fig. 2 shows the function p.θ/, which
is the blue shaded area below the curve, together with the naive p[β= log{θ=.1−θ/}, θ], which
is the grey shaded area. We can see that the correct density is higher for high values of θ as there
are more dense values of β compatible with high values of θ than when θ is close to 0.5.



Moment Conditions and Bayesian Non-parametrics 15

Fig. 2. Projection to the marginal density for θ: , correct marginal density p.θ/, given in equation (7),
with respect to Lebesgue measure; , naive density p[βD log{θ=.1�θ/}, θ] which ignores the corresponding
length of the support

3.3.2. Example 6 (continues example 2)
The density of θ in the mean model is

p.θ/=p.β, θ/
√{

1+
J−1∑
j=1

.sj − sJ /2
}

∝p.β, θ/:

Hence in this case the geometry of the moment condition does not impact the prior on θ. This
will be the case generally when the parameter space Θβ,θ is flat.

3.3.3. Example 7 (continues example 3)
For the regression model write gj =g.sj,β/ for 1 � j � J . Therefore

@gj

@β′ =−s
.2/
j s

.2/′
j ,

and

@β

@θi
=
(

J∑
j=1

θjs
.2/
j s

.2/′
j

)−1

.gi −gJ /:

Moreover

JθJ ′
θ =
(

J∑
j=1

θjs
.2/
j s

.2/′
j

)−1{ J∑
i=1

.gi −gJ /.gi −gJ /′
}(

J∑
j=1

θjs
.2/
j s

.2/′
j

)−1

:
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Similarly for the linear regression model with IVs we have
@gj

@β′ =−s
.3/
j s

.2/′
j ,

and

@β

@θi
=
(

J∑
j=1

θjs
.3/
j s

.2/′
j

)−1

.gi −gJ /,

and therefore

JθJ ′
θ =
(

J∑
j=1

θjs
.3/
j s

.2/′
j

)−1{ J∑
i=1

.gi −gJ /.gi −gJ /′
}(

J∑
j=1

θjs
.3/
j s

.2/′
j

)−1

:

Again generalizing to non-linear regression models is straightforward. If we defineμj =μ.β, s
.2/
j /,

then
@gj

@β′ =−s
.2/
j

@μj

@β′ ,

and

@β

@θi
=
(

J∑
j=1

θjs
.2/
j

@μj

@β′

)−1

.gi −gJ /,

which implies that

JθJ ′
θ =
(

J∑
j=1

θjs
.2/
j

@μj

@β′

)−1{ J∑
i=1

.gi −gJ /.gi −gJ /′
}(

J∑
j=1

θjs
.2/
j

@μj

@β′

)−1

:

For instance for μ.β, s.2//= exp.β′.2// we have
@gj

@β′ =−s
.2/
j exp.β

′.2/
j /s

.2/′
j ,

and

@β

@θi
=
{

J∑
j=1

θjs
.2/
j exp.β

′.2/
j /s

.2/′
j

}−1

.gi −gJ /,

and hence

JθJ ′
θ =
{

J∑
j=1

θjs
.2/
j exp.β

′.2/
j /s

.2/′
j

}−1{ J∑
i=1

.gi −gJ /.gi −gJ /′
}{

J∑
j=1

θjs
.2/
j exp.β

′.2/
j /s

.2/′
j

}−1

:

3.3.4. Example 8 (continues example 4)
For the causal inference problem write gj =g.sj,β/, for 1 � j � J . Then

@gj

@β′ =
(

s
.1/
j ηj.1−ηj/s

.1/′
j 0K×1

01×K −1

)
,

and

@β

@θi
=
⎛
⎝ J∑

j=1
θjs

.1/
j ηj.1−ηj/s

.1/′
j 0K×1

01×K −1

⎞
⎠

−1

.gi −gJ /,
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which implies that

JθJ ′
θ =
⎛
⎝ J∑

j=1
θjs

.1/
j ηj.1−ηj/s

.1/′
j 0K×1

01×K −1

⎞
⎠

−1{
J∑

i=1
.gi −gJ /.gi −gJ /′

}

×
⎛
⎝ J∑

j=1
θjs

.1/
j ηj.1−ηj/s

.1/′
j 0K×1

01×K −1

⎞
⎠

−1

:

An immediate consequence of proposition 1 is that, if we reparameterize the scientific pa-
rameters of interest ψ=ψ.β/ by using a one-to-one transform, then

p.ψ, θ/=

√∣∣∣ @β
@θ′

@β

@θ′
′
+ Ip

∣∣∣
√∣∣∣ @ψ

@θ′
@ψ

@θ′
′
+ Ip

∣∣∣p.β, θ/, .8/

where p.ψ, θ/ and p.β, θ/ are densities with respect to Hausdorff measures.

3.4. Joint method
Alternatively, we may draw random samples directly from the posterior of .β, θ/. This distribu-
tion is supported on a zero Lebesgue measure set Θβ,θ, with density function (with respect to
Hausdorff measure) p.β, θ/. If we ignore this and propose moves from a continuous proposal
distribution in RJ+p−1 (for instance a Gaussian proposal), the proposed moves are off the sup-
port of p.β, θ/ almost surely, and they will be rejected with probability 1. Therefore to sample
from p.β, θ/ we must find a proposal distribution that assigns positive probability to Θβ,θ. Draw-
ing random samples from this proposal should be easy and fast and (to compute the acceptance
probability) we should be able to evaluate its density function. This subsection will explain how
this can be achieved. The idea that we have employed here for constructing a proposal distri-
bution is similar to the algorithm that was used by Kitamura and Otsu (2011) to define their
prior distribution; however, we have applied this idea only as a computational tool (building a
proposal distribution for the Metropolis–Hastings algorithm, and not as part of our model).

For a given value of β, the moment conditions imply the affine constraints on θ

Hβθ+gJ =0: .9/

Therefore Θθ|β is a .J − 1/-hyperplane in RJ+p−1. This property enables us to define a suit-
able proposal distribution for .β, θ/. Assume that the current state of the MCMC algorithm is
.β.t/, θ.t//. First we explain how a random sample from the proposal can be drawn, and then we
shall show how the density of this proposal can be evaluated. To draw a random sample from
q.·, · |β.t/, θ.t// requires the following steps.

Step 1: draw βÅ|β.t/, θ.t/ from an (almost) arbitrary proposal q.·|β.t/, θ.t//.
Step 2: draw θÅ from a singular distribution supported on the hyperplane PÅ = {λ∈ RJ−1;
HÅ
βÅλ+ gÅ

J = 0}. We denote the density of this distribution (with respect to the Hausdorff
measure) by q.·|β.t/, θ.t/,βÅ/. Moreover we assume that the density can be easily evaluated
at any θÅ. A singular normal distribution supported on PÅ is one suitable choice (see Khatri
(1968)). In Appendix A.3 we provide a way to determine the parameters of a singular normal
distribution that can be used to propose for θÅ|β.t/, θ.t/,βÅ.
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So far we have shown how a random proposal can be generated from q.·, · |β.t/, θ.t//. The
following propositions demonstrates how the density of this proposal can be evaluated when
p= r.

Proposition 2. Let p.β, θ/ be the density of .β, θ/ with respect to .J −1/-dimensional Haus-
dorff measure on Θβ, θ. Moreover assume that the density of β with respect to Lebesgue measure
is p.β/, and the density of θ|β with respect to Hausdorff measure is p.θ|β/ on Θθ|β , where Θθ|β
is a hyperplane. Then

p.β, θ/= |JθJ ′
θ|1=2

|JθJ ′
θ + Ip|1=2 p.β/p.θ|β/, Jθ = @β

@θ′ : .10/

The proposed pairs .βÅ, θÅ/ satisfy the moment conditions; however, the probabilities may not
satisfy the probability axioms (as some of θÅ may be negative or θÅJ =1− ι′θÅ � 0). Obviously in
these cases the proposal is rejected (since the posterior is 0), the MCMC algorithm sticks, and the
proposal’s density need not be evaluated. If the proposal is valid, then the move .β, θ/→ .βÅ, θÅ/

is accepted with probability

min
{

1,
p.βÅ, θÅ|Z/

p.β, θ|Z/

q.β, θ|βÅ, θÅ/

q.βÅ, θÅ|β, θ/

}
: .11/

The terms inside this acceptance probability are straightforward to compute up to proportion-
ality.

In the joint method we do not need to solve for β in each iteration of the simulation, because
our proposed moves are elements of the parameter space Θβ,θ. Moreover, when J →∞, the
Jacobian term in expression (10) converges to 1. To see this assume that the data-generating
process is a continuous distribution or a discrete distribution with infinite support, sj ∼ H .
Then, as

1
J

JθJ ′
θ = 1

J
Eθ

(
@g

@β′

)−1

HβH ′
β

{
Eθ

(
@g

@β′

)′}−1

,

and

1
J

HβH ′
β = 1

J

J∑
j=1

.gj −gJ /.gj −gJ /′,

so if the sj are IID then

|JθJ ′
θ|

|JθJ ′
θ + Ip| = |.1=J/JθJ ′

θ|
|.1=J/JθJ ′

θ + .1=J/Ip| →1,

with probability 1 as J → ∞. This asymptotic approximation could be used to simplify the
computation of the acceptance probability but otherwise does not change the substance of this
section, as proposals will be made in the same way—directly on the manifold.

3.5. Constrained Hamiltonian Monte Carlo sampling
Following Lelièvre et al. (2012), let q = .β, θ/ be the vector of constrained parameters and,
similarly to the classical Hamiltonian Monte Carlo algorithm, introduce p + J − 1 auxiliary
moment variables, u= .pβ , pθ/. The Hamiltonian of the system is defined to be
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H.β, θ, pβ , pθ/=u′M−1u− log{pβ, θ|Z},

subject to the constraints ξ.q/=ΣJ
j=1θjg.sj,β/=0, and M is a strictly positive symmetric mass

matrix (usually a diagonal matrix). The equilibrium distribution of the Hamiltonian dynamics,

dqt =M−1ut dt,

dut =
{∇p.β, θ|Z/−γ.qt/M

−1ut

}
dt +σ.qt/ dWt +∇ξ.qt/dλt ,

with σ.qt/σ.qt/
′ = 2γ.qt/, and subject to the constraint ξ.qt/= 0, has a density that is propor-

tional to exp{−H.β, θ, pβ , pθ/}. Here λt is the Lagrange multiplier process that is associated
with the moment conditions. Lelièvre et al. (2012) proposed a numerical scheme that relies on
a splitting strategy (see also Bou-Rabee and Owhadi (2010)). They discussed a special choice
of parameters M and γ (the overdamped Langevin dynamics), in which the numerical scheme
is an Euler discretization of the dynamics with a projection that is associated with the con-
straints. A Metropolis–Hastings step corrects the discretization error, so that the stationary
distribution of the chain is equal to p.β, θ|Z/ supported on the submanifold of the parame-
ters. The discretization of the constrained Hamiltonian relies on an explicit integrator (‘rattle’;
see Anderson (1983)) that involves solving a system of p non-linear equations for λ of the
form ξ{qn + 2un+1=4 + δt∇p.qn|Z/ + 2∇ξ.qn/λ} = 0: This may be computationally expensive
for moderate p and complicated moment conditions and could slow down the algorithm. This
numerical scheme is described in Appendix A.6.5. For theoretical details see Lelièvre et al.
(2012).

3.6. Relationship to the Bayesian bootstrap
The Rubin (1981) ‘Bayesian bootstrap’ is at the core of Chamberlain and Imbens (2003). We
can implement our proposition 1 by using their Bayesian bootstrap as a proposal which can be
reweighted to allow for informative priors on β. Throughout we assume that β can be solved
given θ.

Our generalization of Chamberlain and Imbens (2003) starts with the Dirichlet prior πÅ.θ/∝
ΠJ

j=1θ
α−1
j , α> 0. The Bayesian bootstrap then simulates from the proposal density,

g.θ|Z/∝
J∏

j=1
θ

nj+α−1
j : .12/

We assume that the researcher does this M times, writing the draws as {θ.k/}k=1,2,:::,M . For each
θ.k/ we assume that there is a unique β.k/ which solves the corresponding moment conditions.
Chamberlain and Imbens (2003) stopped at this point, using this sample as a Monte Carlo
estimate of the posterior.

Correcting for the geometry of the problem, the actual posterior is

p.θ|Z/∝p.β, θ/
(

J∏
j=1

θ
nj

j

)
|JθJ ′

θ + Ip|1=2: .13/

The resulting weights from the true posterior density with respect to the Lebesgue measure
dividing by the density from the proposal are

w.k/ = p.β.k/, θ.k//|J .k/
θ J .k/′

θ + Ip|1=2∏J
j=1 .θ

.k/
j /α−1

, k =1, 2, : : : , M .14/
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(where J .k/
θ is equal to Jθ evaluated at .β.k/, θ.k//) which normalize as w.k/Å = w.k/=ΣM

k=1w.k/.
An encouraging aspect of this weight is that its functional form is free of data (nj, for j =1, : : : ,
J), since the models have a common likelihood.

In the special case where p.β, θ/∝π.β/πÅ.θ/, the weights may be simply evaluated as

w.k/ ∝π.β.k//|J .k/
θ J .k/′

θ + Ip|1=2, k =1, 2, : : : , M: .15/

We can use these weights to estimate E[h.β/|Z]
 .1=M/ΣM
k=1w.k/Å

h.β.k//. This is importance
sampling, e.g. Marshall (1956), Geweke (1989) and Liu (2001). An alternative is to resample
with probability proportional to the weight w.k/, which delivers sampling–importance resam-
pling (see Rubin (1988)). As with all importance samplers, the weights may become uneven
although the simplicity of the structure of the weights is encouraging. This sampling strategy
becomes appealing in the models where the β can be computed easily for any θ, and the prior
distribution of β is not too far from the posterior that is obtained from the Bayesian boot-
strap.

3.7. Unknown support
So far we have assumed that the support of the data is known. Here we deal with the case where
the support is unknown but finite. Suppose that the support has J elements, S = .s1, : : : , sJ /. Let
θ be the vector of the probabilities of the elements of S.

We assume that the support is IID draws from FS , sj ∼IIDFS for j =1, : : : , J , with density fS

with respect to Lebesgue measure.
Then the moment conditions are

J∑
j=1

θj g.sj,β/=0,

whereas the posterior is

p.β, θ, S|Z/∝p.β, θ, S/
J∏

j=1
θ

nj

j ,

where nj =ΣN
i=11.Zi = sj/.

Assume that the researcher expresses a prior on .β, θ/|S with respect to the Hausdorff measure,
p.β, θ|S/. Then

p.β, θ, S/=
{

J∏
j=1

fS.sj/

}
p.β, θ|S/: .16/

Given θ and S, β is uniquely determined. Therefore the core result that we need to do inference
is a generalization of proposition 1: the density of the probabilities and the support with respect
to the Lebesgue measure is

p.θ, S/=|JθJ ′
θ +JSJ ′

S + Ip|1=2
{

J∏
j=1

fS.sj/

}
p.β, θ|S/, .17/

where
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Jθ = @β

@θ
=
(

J∑
j=1

θj
@gj

@β′

)−1

Hβ ,

JS = @β

@S
=
(

J∑
j=1

θj
@gj

@β′

)−1

M,

M =
{
θ1

(
@g1

@s′
1

)
, : : : , θJ

(
@gJ

@s′
J

)}
: .18/

Again this result follows from the area formula. Proposition 2 generalizes in the same way
delivering

p.β, θ, S/= |JθJ ′
θ +JSJ ′

S |1=2

|JθJ ′
θ +JSJ ′

S + Ip|1=2 p.β|S/p.θ|β, S/
J∏

j=1
fS.sj/: .19/

This paper leaves open what happens to this analysis as J →∞ for further research.

4. Some potential priors

So far we have discussed working with any prior p.β, θ/ which is defined with respect to lower
dimensional Hausdorff measure supported on Θβ,θ. In this section we discuss potential ways of
selecting p.β, θ/. As with all prior selection there is no uniquely good way of carrying this out.

4.1. A non-science prior
From a non-parametric standpoint it is natural to build a prior from p.θ/, e.g. Dirichlet. Then
proposition 1 implies that there is a unique joint prior

p.β, θ/= p.θ/√|JθJ ′
θ + Ip| , .20/

which achieves this. The right-hand side p.θ/ is the density of θwith respect to Lebesgue measure,
whereas p.β, θ/ is the density of .β, θ/ with respect to Hausdorff measure. This implies that

Pr{.β, θ/∈C}=
∫

Cθ

p.θ/dθ: .21/

The Dirichlet special case (20) is the implicit Chamberlain and Imbens (2003) prior on p.β, θ/.

4.2. A prior on β
Proposition 2 says that

p.β, θ/= |JθJ ′
θ|1=2

|JθJ ′
θ + Ip|1=2 p.β/p.θ|β/: .22/

If we place a prior on β, with density p.β/ with respect to Lebesgue measure, then we can form a
scientifically centred prior on p.β, θ/ by specifying a prior on p.θ|β/ with respect to the .J −1−
p/-dimensional Hausdorff measure. This prior sits on the hyperplane θ|β satisfying the linear
constraints (9) and the probability axioms. One such prior is Dirichlet subject to the constraints.
Again if J becomes large the Jacobian in equation (22) will become unimportant in practice.
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4.3. Ad hoc priors
A more brutal approach to building a prior is to define an ‘initial’ prior (with respect to Lebesgue
measure) for β and θ which ignores the moment condition η.β, θ/ where the implied initial
marginal prior on β, η.β/, could be our substantive initial prior. From the Borel paradox
(Kolmogorov, 1956) we know that there are many ways of building a p.β, θ/ from η.β, θ/
(conditioning on satisfying the moment condition is not enough) but here we discuss various
plausible methods.

This line of thinking leads to a generalization of prior (20), setting

p.β, θ/∝ η.β, θ/
|JθJ ′

θ + Ip|1=2 1Θβ,θ .β, θ/: .23/

This prior scales the initial prior to countereffect the length of the curve mapping out the
relationship between θ and β that is implied by the moment condition. This prior has the
property that p.θ/∝η.β, θ/1Θβ, θ .β, θ/, with respect to the Lebesgue measure.

The simple case of η.β, θ/=η.β/η.θ/ would imply under expression (23) that

p.θ/∝η.β/η.θ/1Θβ,θ .β, θ/: .24/

The case where η.θ/ is Dirichlet is important. Then the Bayesian bootstrap weights (23) would
become the rather simple

wj ∝η.β.j//, j =1, 2, : : : , M: .25/

This is a minimally informative generalization of Chamberlain and Imbens (2003).
An alternative to expression (23) is to put no mass on inadmissible combinations of β and θ.

We call this the ‘truncated prior’

p.β, θ/∝η.β, θ/1Θβ,θ .β, θ/ .26/

in which p.β, θ/ is the density of the prior with respect to the .J − 1/-dimension Hausdorff
measure in RJ−1+p. This would imply for any set C ∈RJ−1+p that

Pr{.β, θ/∈C}=
∫

Cθ

p.β, θ/
√|JθJ ′

θ + Ip|dθ .27/

∝
∫

Cθ

η.β, θ/
√|JθJ ′

θ + Ip|dθ:

Obviously it implies that p.θ/ ∝ η.β, θ/
√|JθJ ′

θ + Ip|1Θβ,θ .β, θ/, with respect to the Lebesgue
measure.

4.3.1. Example 9 (continuing logistic example 1)
Assume the initial prior

η.β, θ/∝θ0:01−1.1−θ/0:01−1 exp
{− 1

2 .β−1/2
}

, .28/

which is a relatively ignorant Dirichlet prior on the probabilities and an informative Gaussian
prior for β centred on one. This is depicted in Fig. 3. With this initial prior and using the class
of priors (26), the density with respect to the univariate Hausdorff measure is

p.β, θ/∝η.β, θ/1Θβ,θ .β, θ/: .29/
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Fig. 3. Parameter space ( ) Θβ,θ and the initial prior π.β, θ/: Fig. 1 shows the implied p.β, θ/

Fig. 1 shows the corresponding p.β, θ/ living on the manifold. In this case

p.θ/∝η.β, θ/
√{

1+
(

@β

@θ

)2}
1Θβ, θ .β, θ/, .30/

with respect to the Lebesgue measure. With the alternative prior (23), then

p.β, θ/∝ η.β, θ/√{1+ .@β=@θ/2}1Θβ, θ .β, θ/,

p.θ/∝η.β, θ/1Θβ,θ .β, θ/:
.31/

5. Illustrative examples

In this section we present some illustrative examples and simulation studies. Since the MCMC
results obtained by the marginal, joint and constrained Hamiltonian Monte Carlo methods are
indistinguishable, we present only one of them. At the end of the section we study how the
methods scale.

5.1. The mean
Recall example 2. Now focus on J =3 and S = .−1, 0, 1/, so β=θ3 −θ1 =1−2θ1 −θ2. Here we
have taken the two-dimensional Hausdorff prior as

p.β, θ/∝ exp.−2|β−m|/θα−1
1 θα−1

2 .1−θ1 −θ2/α−11.min{θ1, θ2, 1−θ1 −θ2} � 0/: .32/



24 L. Bornn, N. Shephard and R. Solgi

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Equiprobability contours implied by the Laplace–Dirichlet prior on p.β, θ/ with respect to the
Hausdorff measure (plotted is the marginal p.θ1, θ3/ for several values of m and α, with θ2 implied as
θ2 D1�θ1 �θ3; this case has J D3 points of support (s1 D�1, s2 D0 and s3 D1) and r D1 moment constraints
(the mean)): (a) αD 0.01, m D 0; (b) αD 0.5, m D 0; (c) αD 5, m D 0; (d) αD 10, m D 0; (e) αD 0.01, m D 0.5; (f)
αD0.5, mD0.5; (g) αD5, mD0.5; (h) αD10, mD0.5

We call this a ‘Laplace–Dirichlet’ distribution, where β is centred on m and the Dirichlet part
is indexed by α.

By the marginal method:

p.θ/∝ exp.−2|1−2θ1 −θ2 −m|/θα−1
1 θα−1

2 .1−θ1 −θ2/α−11.min{θ1, θ2, 1−θ1 −θ2} � 0/:

.33/

Fig. 4 shows the contours of p.θ/ for various values of m and α. We have plotted these contours
against .θ1, θ2, θ3/′ so that the reader can compare θ1 and θ3.

If the Laplace–Dirichlet distribution has m=0 then the density is symmetric with respect to
θ1 and θ3. When the location parameter of p.β/ is positive θ1 is on average smaller than θ3.
Moreover, as α increases, the variability of p.θ/ decreases.

Fig. 5 draws the prior for β. Here the support of the data means that β is restricted to the
real line; after observing the support of the data its prior is restricted to [−1, 1]. As α increases,
the variance of β decreases. For instance β’s prior centred at a positive value results in a prior
for θ tilted towards θ3, even if the prior of θ is symmetric. In the same way, a more informative
initial prior for θ yields a more peaked prior for β.

5.2. Linear regression
Recall the linear regression of example 3. Assume that the observed data are Z = {.1, 1/, .2, 4/,
.3, 9/}. Earlier we have seen that the parameter space Θβ,θ is a non-flat surface in R3. Fig. 6
demonstrates the posterior distribution of the parameters defined on this surface (the prior
parameters are α=0:5 and m=3).
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Fig. 6. Posterior distribution of the linear regression model with data Z D {.1, 1/, .2, 4/, .3, 9/}: the prior
parameters are αD0.5 and mD3

Following the suggested MCMC simulation algorithms we draw 100000 samples from the
posterior distribution of the parameters. In Fig. 7 we have drawn the contour plots of the
posterior distribution of the probabilities. Analytical results have been compared with the
estimates that were obtained by a kernel density estimator using the MCMC draws.

5.3. Simulation study
To demonstrate the scalability of the algorithms we consider a linear regression model with
sample size J = 500. The data Zj = .Yj, Xj/, for 1 � j � J , are generated according to Xj ∼
N .1, 22/, Yj|Xj ∼N .2+5Xj, 102/. We assume that the substantive prior of β is β∼N .μ0, Σ0/,
where the elements of μ0 are equal to the 25% quantiles of the asymptotic maximum likelihood
estimators, and Σ0 is equal to the asymptotic variance of the maximum likelihood estimator
multiplied by 100 (see Appendix A.5 for the results with a different prior). The initial prior of
θ is a symmetric Dirichlet distribution with parameter α=0:01. We have drawn 50000 samples
from the posterior after a 5000-sample burn-in (the chain’s trace has been thinned with a factor
of 100 and so has been iterated 5 million times). The scatter plot of the sample is depicted in
Fig. 8(a). Each circle represents a data point in our sample and its radius is proportional to
the expected value of its posterior probability, i.e. E[θj|Z]. In Fig. 8(b) the correlogram (auto-
correlation function of the chains of β and 10 elements of θ have been presented (the red broken
curves and the blue dotted curves correspond to β and θ respectively.) The auto-correlation
functions demonstrate that the Markov chain is mixing sufficiently well. In Fig. 8(c) the contour
plot of the posterior distribution of β has been compared with that obtained by the Bayesian
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Posterior distribution of θ in the linear regression model with data Z D {.1, 1/, .2, 4/, .3, 9/} (anal-
ytical results and the estimates obtained by a kernel density estimator by using 100000 MCMC draws):
(a) αD0.01, mD1; (b) αD0.05, mD1; (c) αD5, mD1; (d) αD10, mD1; (e) αD0.01, mD3; (f) αD0.5, mD3;
(g) αD5, mD3; (h) αD10, mD3

bootstrapping of Chamberlain and Imbens (2003). The posterior distributions are very close,
because the prior’s information is roughly 1% of the information content of the sample. Fig.
8(d) shows a histogram of the samples from the posterior distribution of β.

6. Empirical studies

In this section we study two empirical examples. The first focuses on an IV-based estimator; the
second looks at estimating the ATE from an experiment.

6.1. Instrumental variables
We use a subsample of the earnings and schooling data set that was studied in Chamberlain and
Imbens (2003). This data set is a subset of the data that were studied in Angrist and Krueger
(1991) and consist of the self-reported weekly log-earnings (self-reported annual earnings di-
vided by 52) of 162512 male subjects who reported positive annual wages in 1979 along with
their number of years of education and their quarter-of-birth date. In turn this is a 5% ran-
dom sample from the 1980 public use census data. Bound et al. (2001) discussed the myriad of
problems of self-report income data but we do not address that issue here.

Chamberlain and Imbens (2003) studied the dependence of earnings on the level of schooling
by using a linear additive treatment effect model (e.g. Imbens and Rubin (2015)). They modelled
schooling levels as being determined by rational agents’ optimization of their lifetime expected
utility. Since the utility is a function of the earnings, they needed to estimate the distribution of
earnings as a function of the schooling level.

The expected log-earnings YX with schooling level X are modelled here as E[YX|X, Y0]=Y0 +
β1X, where X is the schooling level, β1 is the unknown return to education and Y0 is the earnings
level with no schooling at all. Let β0 be the expected value of Y0, so Y0 −β0 has a zero mean.
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(a) (b)

(c) (d)

Fig. 8. Inference in a linear regression model with J D500: (a) sample and the posterior probabilities (circles
whose radius is the posterior expectation of the probabilities given the data, E[θj jZ]); (b) correlogram for the
thinned draws of the elements of β and 10 elements of θ; (c) estimated contour and (d) marginal densities of
the resulting posterior ( , β1; , β2)

To estimate the unknown parameters, β= .β0,β1/, we follow Angrist and Krueger (1991) and
Chamberlain and Imbens (2003) and use an IV W that is a binary indicator: W =0 if the subject
was born in the first three quarters of the year and W =1 otherwise. The IV W is correlated with
the regressor X and thought by the researchers to be uncorrelated with the errors.

We obtain the classical IV estimates of β by using the full sample and treat them as the
‘true’ values of β. Then we draw random samples with replacement of size J from the orig-
inal data 1000 times. Our aim will be to compare different estimators by using these smaller
samples.

Our prior distribution, which is specified to be weakly informative, is

p.β, θ/∝ 1√
.JθJ ′

θ + I2/
η.β/η.θ/1Θβ,θ .β, θ/, .34/



Moment Conditions and Bayesian Non-parametrics 29

where η.β/ =ϕ.β0; 5, 4/ϕ.β1; 0, 0:2/, and ϕ.·;μ,σ2/ is the Gaussian density with mean μ and
variance σ2. The intercept is centred at 5 with variance 4, implying that the mean annual income
for those with no schooling is equal to $7717 (with 95% confidence interval [$153, $388965]) with
0 years of schooling. Moreover the prior of β1 has zero mean (no effect of number of schooling
years on income) with 95% interval [−0:88, 0:88] (that is equivalent to [−0:41%, 241%] income
increment for each additional year of schooling.) The probabilities θ are taken as a mildly
informative Dirichlet prior η.θ/ ∝ΠJ

j=1θ
α−1
j , where α= 10−6 (we also tried α= J−1, with no

substantial change in the results).
For 1000 replications, a random sample of size J has been drawn with replacement from the

162512 population. For each replication the resulting marginal prior distributions of β0 and β1
depend on the draws which generate the support and so vary over the 1000 cases. Fig. 9 shows
the pointwise 95% confidence intervals of the marginal prior distributions over these 1000 cases,
for J =100, 1000, 5000, 10000. It shows that the prior is modestly informative and only mildly
depends on the random support and J , with less variation across replications in the prior density
as J increases. Similar results have been obtained for other sample sizes J .

For each random sample, we compute the classical IV estimates of β and the Chamberlain
and Imbens (2003) Bayesian bootstrapping estimates obtained by 10000 draws. For the latter
we report both the means and the medians as the estimators. These estimators are compared
with the weakly informative Bayesian estimators (using the prior that was described earlier).

The Bayesian estimates are obtained by the following resampling method. Initially a sample
of size 10000 is drawn from a Dirichlet distribution with parameter .n1 +α−1, : : : , nJ +α−1/,
and the importance sampling weights are computed as w.k/ ∝η.β.k//. Then a sample from the
posterior can be obtained by resampling using the normalized weights. Estimators of the mean
and the median of the posterior are reported here. For J = 10, 100, 1000, 5000, 10000, 40000,
100000 the effective sample size divided by J (Liu (2001), page 35) was 0:620, 0:576, 0:607,
0:719, 0:819, 0:978 and 0:997 respectively. This suggests that this is a reasonable method for this
problem.

In Fig. 10 the sampling distribution of these five estimators have been plotted. The blue
curves correspond to the classical IV estimator. They exhibit a very imprecise estimator and
assign significant probabilities to economically irrelevant values of β (this is a well-known
disappointing property of this estimator, e.g. Bound et al. (1995)). The mean of the Bayesian
bootstrapping estimator of Chamberlain and Imbens (2003) has a very large variance also (the
orange curves), but its median is more precise (the yellow curves). The Bayesian estimators (that
are the mean and the median of the posterior) are the most precise estimators.

The bias (with its standard error) and the root-mean-square error RMSE of the estimators
are reported in Table 1. Although the Bayesian estimators are slightly biased, thanks to their
small variances they have lower RMSE. In Table 1 and Fig. 11 we have also reported the length
of the 95% confidence intervals of the sampling distribution of the estimators (over the 1000
replications) of β0 and β1 for sample sizes J = 10, 100, 1000, 5000, 10000, 40000, 100000. This
shows that the Bayesian estimators are far more accurate than the classical IV estimator and
Bayesian bootstrapping for most sample sizes. However, when J hits around 100000 the old
methods catch up to our techniques.

Why does our method do better? For weakly identified models even a very modestly infor-
mative prior, which downweights economically implausible values of the parameter space, cuts
off the tails of the posterior corresponding to these implausible values. Because of the ridge-like
posterior that is induced by the weakly informative likelihood, the posterior contracts onto
a manifold, rather than a single point. As such, having a prior which constrains the feasible
support provides value.
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Fig. 11. Length of the 95% confidence intervals of the sampling distribution of the parameters β0 and β1 for
various sample sizes J, and for the classical IV estimator ( ), Bayesian bootstrapping ( , mean;

, median) and Bayesian method ( , mean; , median) ( , our estimated 95% confidence
interval estimates of the lengths): (a) β0; (b) β1
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6.2. Causal inference
In this example we analyse the data set of Imbens et al. (2001). The data set contains socio-
economic variables of 496 individuals who had won monetary prizes in the Massachusetts
lottery. Following Imbens and Rubin (2015), we call the individuals who won large sums of
money ‘the winners’ (237 observations), and those who won only small amounts ‘the losers’ (259
observations). The goal is to study the effect of unearned income on the economic behaviour of
the subjects, more specifically, on their average labour income over the first 6 years following the
year in which they had won the lottery. For each individual the treatment indicator Wi is equal
to 1 for the winners and 0 for the losers. The uncontroversial assumption behind this study is the
random treatment assignment; however, one may argue that the sample is not representative of
the population. For instance in the literature it is well documented that lottery players are slightly
more likely to be male and middle aged, with lower income and less education (see Clotfelter
and Cook (1989), Farrel and Walker (1999) and Ariyabuddhiphongs (2011), among others).

The data set includes the year in which the winning lottery ticket is purchased, YW, the
number of tickets purchased in a typical week, TB, the individual’s age Age, gender G and years
of schooling, YS, which is an indicator showing whether she has been working during the year
that the winning ticket is purchased, WT, and the annual social security earnings from 6 years
before the year in which the winning ticket is purchased, EYB1, : : : , EYB6, to 6 years after that,
EYA1, : : : , EYA6, all converted to 1986 dollars. The authors argued, perhaps optimistically,
that social security income is potentially the most reliable measure of income in the long run,
although it is capped to the maximum taxable earning ($42000 in 1986).

To improve the overlap of the background variables, following the recommendation of Imbens
and Rubin (2015), initially we model the propensity scores by using a logistic regression model,
and estimate the model’s parameter by using the Bayesian bootstrapping of Chamberlain and
Imbens (2003). The covariates of the model are a constant, the linear terms TB, YS, WT, EYB1,
Age and YW, the indicator for the positiveness of the earnings 5 years before winning the lottery,
SEYB5, G and the quadratic terms YW × YW, EYB1 × G, TB × TB, TB × WT, YS × YS,
YS × EYB1, TB × YS, EYB1 × Age, Age × Age and YW×G. We discard the observations with
too small (less than 0.0891) or too large (greater than 0.9109) estimates of propensity scores.
This results in a sample of size N = 295 (142 winners and 153 losers). In the model proposed
the propensity score is regressed on 13 covariates by using a logistic regression. The vector of
covariates is denoted by Xi and includes a constant, the linear terms TB, YS, WT, EYB1, Age,
SEYB5, YW and EYB5, and the quadratic terms YW × YW, TB × YW, TB × TB and WT ×
YW. For details on the variable selection see Imbens and Rubin (2015). The outcome Yi is the
average of the individual’s income averaged over the first 6 years after purchasing the winning
lottery ticket. Therefore the parameters of the logistic regression model, γ, and the ATE τ satisfy
the moment conditions,

E[g.Zi,β/]=0, g.Zi,β/=
(

Xi.Yi −ηi/

.Wi −ηi/Yi

/{ηi .1−ηi/}− τ

)
, .35/

in which, Zi = .Xi, Yi, Wi/, β= .γ, τ / and ηi = exp.γ′Xi/={1+ exp.γ′Xi/}. If we assume that the
Zis are IID draws from a discrete distribution supported on {s1, : : : , sJ}, with P.Zi = sj/= θj,
the parameters .β, θ/ will satisfy the following system of equations:⎛

⎜⎜⎝
J∑

j=1
θjxj.yj −ηj/

J∑
j=1

θj.wj −ηj/yj

/{ηj.1−ηj/}− τ

⎞
⎟⎟⎠=0: .36/
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Fig. 12. Posterior distribution of the ATE on subsequent annual earnings of a substantial lottery win for the
lottery data set

We let the prior of .β, θ/ be

p.β, θ/∝ 1√
.JθJ ′

θ + I14/
η.γ/η.τ /η.θ/1Θβ,θ .β, θ/, .37/

in which the initial prior of the regression coefficients η.γ/ is a normal distribution centred at
their estimates obtained from the Bayesian bootstrap of Chamberlain and Imbens (2003) and its
covariance matrix is equal to the covariance matrix of estimates scaled by a factor of 100, and the
initial prior of the ATE is a zero mean normal distribution with variance equal to 100. Moreover
we use a symmetric Dirichlet distribution with parameter α=10−6 as the initial prior on θ.

By reweighting draws from the posterior distribution of the Bayesian bootstrap of Chamber-
lain and Imbens (2003), we obtain 10000 independent draws from the posterior of our model. An
estimate of the posterior distribution of the ATE is depicted in Fig. 12. A posteriori the expected
value of the ATE is −$5346 (with 95% credible interval [−$8069, −$2720]). This indicates that
the average income of the winners of the lotteries, in the years after winning the prize, tend to
decrease slightly. Our estimate of the ATE is only slightly different from the frequentist estimate.

7. Conclusions

In this paper we have provided a coherent Bayesian calculus for rational non-parametric moment-
based estimators, allowing users to specify meaningful priors. At the core of our analysis is a
prior density placed on the Hausdorff measure whose support is generated by the parameters
of interest and the non-parametric probabilities. We show how to transform this prior into a
posterior density.

Much moment-based analysis in the literature delivers weakly identified parameters. The use
of very modest priors can dramatically improve estimation by downweighting vast regions of
implausible parameter values. Such weak priors play little role when the data are informative
but provide a safety net when this is not so.

To harness these gains, at the centre of our paper are the marginal method and the joint
method. The first is based on finding the density of the probabilities with respect to a Lebesgue
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measure. This enables the use of conventional simulation methods such as MCMC, importance
sampling and Hamiltonian Monte Carlo methods. It is convenient to use where the moment
conditions can be solved analytically or numerically very fast.

Our joint method is somewhat more difficult to code but has the virtue of never having to
solve the moment equations. This has some speed advantages but more fundamentally allows
the rational analysis of moment condition models with many solutions. As a side product our
method provides a novel way of generically simulating on a wide class of manifolds, which may
be useful in other areas of science.
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Appendix A

A.1 Proof of proposition 1
Since corresponding to every θ∈Θθ there is a uniqueβ, there is a one-to-one mapping between Θβ,θ and Θθ:
.β, θ/={β.θ/, θ/}=F.θ/. Now let A be a measurable set on Θβ,θ, and assume that Sθ.A/ is its projection
on Θθ. Therefore

P{Sθ.A/}=P.A/=
∫

A

p.β, θ/ dA=
∫

Sθ.A/

‖v1 ∧: : :∧vJ−1‖p.β, θ/ dS

where vj =@F=@θj (for 1 � j � J −1). Therefore ‖v1 ∧: : :∧vJ−1‖p.β, θ/ is the density of θ with respect to
Lebesgue measure. Moreover,

‖v1 ∧: : :∧vJ−1‖=Gram.v1, : : : , vJ−1/
1=2 =|JθJ ′

θ + IJ−1|1=2 =|JθJ ′
θ + Ip|1=2

where Gram.·/ is the Gramian determinant and Jθ = @β=@θ′.

A.2. Proof of proposition 2
Let p.β/ be the density of β. Then, given β, the vector of probabilities θ lives on a .J −1−p/-dimensional
hyperplane in RJ−1 defined by Hθ+ gJ =0. This system of equations can be solved for p elements of the
variables θJ−p:J−1 =−H−1

2 .H1θ1:J−p−1 −gJ /, where H1 = .h1: : : hJ−p−1/ and H2 = .hJ−p: : : hJ−1/. Therefore,
@θJ−p:J−1=@θ1:J−p−1 =−H−1

2 H1 and so

p.θ1:J−p−1|β/=|H−1
2 H1H

′
1H

′−1
2 + Ip|1=2p.θ|β/,

p.θ1:J−p−1,β/=|H−1
2 H1H

′
1H

′−1
2 + Ip|1=2p.β/p.θ|β/:

Therefore the density of θ is

p.θ/=
∣∣∣∣∣
@.θ1:J−p−1,β/

@.θ/

∣∣∣∣∣p.θ1:J−p−1,β/=
∣∣∣∣∣

@β

@θJ−p:J−1

∣∣∣∣∣p.θ1:J−p−1,β/

=
∣∣∣∣∣E

[
@g

@β′

]−1

H2

∣∣∣∣∣p.θ1:J−p−1,β/

=
∣∣∣∣∣E

[
@g

@β′

]−1

H2

∣∣∣∣∣ |H−1
2 H1H

′
1H

′−1
2 + Ip|1=2p.β/p.θ|β/
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=
∣∣∣∣∣E

[
@g

@β′

]−1
∣∣∣∣∣ |H1H

′
1 +H2H

′
2|1=2p.β/p.θ|β/=

∣∣∣∣∣E
[

@g

@β′

]−1
∣∣∣∣∣ |HH ′|1=2p.β/p.θ|β/

=
∣∣∣∣∣E

[
@g

@β′

]−1

HH ′ E
[

@g′

@β

]−1
∣∣∣∣∣

1=2

p.β/p.θ|β/=
∣∣∣∣ @β

@θ′
@β′

@θ

∣∣∣∣
1=2

p.β/p.θ|β/:

Therefore

p.β, θ/=

∣∣∣ @β

@θ′
@β′

@θ

∣∣∣1=2

∣∣∣ @β

@θ′
@β′

@θ
+ Ip

∣∣∣1=2
p.β/p.θ|β/:

A.3. Joint method proposal
To generate a proposal value for θÅ, we can first draw πÅ from N .θ, ΣQ/, and let θÅ be the closest point
to πÅ in the hyperplane PÅ ={λ∈RJ−1; HÅλ+ gÅ

J = 0}, where we measure the distance between πÅ and
θÅ with the squared Euclidean norm:

θÅ =arg min
θ

1
2 ‖πÅ −θ‖2

2 + 1
2 .ι′πÅ − ι′θ/2:

The quadratic penalty is certainly inelegant (e.g. compared with the log-likelihood of the multinomial
model, but see, for example, Owen (1991) and Antoine et al. (2007) who used it for their Euclidean
empirical likelihood) as the resulting θÅ can have negative elements or may result in θÅJ = 1 − ι′θÅ � 0.
However, by using a quadratic penalty, θÅ becomes the solution to a quadratic optimization problem
subject to p equality constraints and so has an analytic solution θÅ =aÅ +BÅπÅ.

The Lagrangian of the optimization is

E[θ,λ]= 1
2 ‖πÅ −θ‖2

2 + 1
2 .ι′πÅ − ι′θ/2 +λ′.HÅθ+gÅ

J /

and the first-order conditions are

@E

@θ
=−.I + ιι′/.πÅ −θÅ/+HÅ′

λ=0,

@E

@λ
=HÅθÅ +gÅ

J =0:

Solving them for θÅ and λ results in

θÅ =πÅ − .I + ιι′/−1HÅ′{HÅ.I + ιι′/−1HÅ′}−1.HÅπÅ +gÅ
J /,

λ={HÅ.I + ιι′/−1HÅ′}−1.HÅπÅ +gÅ
J /:

Therefore θÅ is an affine transformation of πÅ: θÅ =aÅ +BÅπÅ, where

aÅ =−.I + ιι′/−1HÅ′{HÅ.I + ιι′/−1HÅ′}−1gÅ
J ,

BÅ = I − .I + ιι′/−1HÅ′{HÅ.I + ιι′/−1HÅ′}−1HÅ:

This transformation fromπÅ to θÅ is a many-to-one affine transformation. Consequently, θÅ|βÅ,β.t/, θ.t/

is a singular normal distribution with mean aÅ +BÅθ.t/ and variance matrix BÅΣQBÅ.
A singular normal distribution with mean μ and (singular) variance matrix Σ has a density on the range

of the covariance matrix (e.g. Khatri (1968)), given by
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.2π/−rank.Σ/1=2 |Σ|−1=2
rank.Σ/ exp{− 1

2 .x−μ/′Σ+.x−μ/} ,

where |Σ|rank.Σ/ is the product of non-zero eigenvalues of Σ and Σ+ is its Moore–Penrose inverse.
In our algorithm, ΣQ and the parameters inside q.·|β.t/, θ.t// are the tuning parameters. We may either

adapt them in the course of simulation, or they can be set to some fixed values obtained from an estimate
of the posterior’s distribution. Here we document how we have carried this out for our simulation and
empirical work. A simple-to-calculate candidate for the covariance of β’s proposal is Σβ = .Σ−1

0β
+Σ−1

BBβ
/−1,

where Σ−1
0β

is the prior’s covariance and Σ−1
BBβ

is the covariance of the estimates ofβ obtained by the Bayesian
bootstrapping of Chamberlain and Imbens (2003). (As an alternative we may use the asymptotic covariance
of the least squares or generalized method-of-moments estimators.) Moreover a suitable candidate for ΣQ

is diag.θ̂
2
1, : : : , θ̂

2
J−1/ where

θ̂= .θ̂1, : : : , θ̂J−1/=arg max
θ

J∑
j=1

nj ln.θj/ subject to Ĥθ+ ĝJ =0, .38/

in which Ĥ = .ĝ1, : : : , ĝJ−1/− ĝJ ι
′, ĝj =g.β̂, sj/ and β̂= .Σ0β +ΣBBβ /−1.Σ0β μBBβ +ΣBBβ μ0β /.

A.4. Large support
An apparent drawback of the joint method is that, in each evaluation of the proposal’s density, the Moore–
Penrose inverse of the .J −1/× .J −1/ matrix BÅΣQBÅ′ should be computed. In general this costs O.J3/
computational operations. This type of challenge is very common in Bayesian analysis and a standard
approach to this problem is to make proposals to update a block of K �J elements of θ, with cost O.K3/.

Let the K ×1 vector u be a randomly (without replacement) selected subset of the indices {1, : : : , J −1}
and the .J −K−1/×1 vector v be its complement. Moreover let θ̃= .θu1 , : : : , θuK

/ and θ̄= .θv1 , : : : , θvJ−K−1 /.
The proposal’s vector of probabilities θÅ is equal to θ except for the K elements with indices in u,
θ̃
Å = .θÅu1

, : : : , θÅuK
/, that is obtained by solving

θ̃
Å =arg min

θ̃

1
2 ‖θ̃− π̃Å‖+ 1

2 .ι′θ̃− ι′π̃Å/ subject to H̄
Å
θ̄

.t/ + H̃
Å
θ̃+gÅ

J =0, .39/

where H̃
Å = .gÅ

u1
, : : : , gÅ

uK
/− gÅ

J ι
′, H̄

Å = .gÅ
v1

, : : : , gÅ
vJ−K−1

/− gÅ
J ι

′, and π̃Å is a random draw from N.θ̃, Σθ̃/.

Again this is a quadratic optimization problem subject to a set of equality constraints with the solution
θ̃
Å = ãÅ + B̃

Å
π̃Å, where

ãÅ =−.I + ιι′/−1H̃
Å′

{H̃
Å
.I + ιι′/−1H̃

Å′
}−1.H̄

Å
θ̄

.t/ +gÅ
J /,

B̃
Å = I − .I + ιι′/−1H̃

Å′
{H̃

Å
.I + ιι′/−1H̃

Å′
}−1H̃

Å
:

A.5. Linear regression with an informative prior
Here we report the results for the linear regression model with sample size J = 500, and an informative
prior for β. We place a normal prior on β with the mean equal to β̂MLE + .5, −5/′ and the variance equal
to the asymptotic variance of β̂MLE. Therefore the prior is as informative as the data, however, centred at
a significantly different point.

Fig. 13(a) shows a scatter plot of the sample. Each circle represents a data point and its radius is propor-
tional to E[θj|Z]. In Fig. 13(b) the auto-correlation function ACF of the chains of β and 50 elements of θ
have been presented (the red broken curves and the blue dotted curves correspond to β and θ respectively).
These show that the Markov chain is mixing sufficiently well. In Fig. 13(c) the contour plot of the prior
distribution (bottom), posterior distribution of β by using Bayesian bootstrapping and the posterior dis-
tribution of β considering the informative prior (middle) have been depicted. In Fig. 13(d) the histogram
of the samples from the posterior of β can be seen.

A.6. Not the just-identified case
A.6.1. Abstract expression of the problem
Collect all the parameters in the model and constraints as ψ= .θ1, : : : , θJ−1,β1, : : : ,βp/′, and g.ψ/ = 0r:
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(a) (b)

(c) (d)

Fig. 13. Inference in the linear regression model with J D500 and an informative prior: (a), (b) sample and
the posterior probabilities; (c) prior (bottom), Bayesian bootstrap (top) and posterior (middle); (d) posterior
distribution ( , β1; , β2)

The resulting constrained support is ψ ∈Θψ. Write λ=ψI and φ=ψIc , where I selects distinct indices
of ψ and Ic is the complement, so I ∪Ic = {1, 2, : : : , p + J − 1}. Throughout we take dim.φ/ = r and
consequently dim.λ/=J −m, where m= r −p+ 1. Given the freedom to build I we make the following
assumption.

Assumption 1. Under g.ψ/=0 knowledge of λ reveals φ, so there is a unique φ= t.λ/.

A.6.2. Marginal method
Under assumption 1, the area formula implies that p.λ/=p.ψ/

√|Ir +JφλJ ′
φλ|, Jφλ =@φ=@λ′, where p.ψ/

is a density with respect to the .J − 1 +p− r/-dimensional Hausdorff measure on Θψ, whereas p.λ/ is a
density with respect to the .J −m/-dimensional Lebesgue measure.

A.6.3. Underidentification

Definition 1. If r < p (so m � 0) then the system is called underidentified.

We split β= .β1, : : : ,βp/′ as β[1] =βG and β[2] =βGc , where G ∪Gc ={1, 2, : : : , p}, dim .G/=p− r and
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dim .Gc/= r, and build λ= .θ1, : : : , θJ−1,β′
[1]/

′, φ=β[2]. Hence λ augments θ with p− r elements from β.
Assumption 1 holds if G can be found such that β[2] = t.θ1, : : : , θJ−1,β[1]/.

A.6.3.1. Example 10. Consider the IV problem g.s,β/ = s.3/.s.1/ − β′s.2//, dim.s.2// = p and
dim.s.3// = r. If p > r then split β = .β′

[1],β
′
[2]/

′, where dim.β[1]/ = r − p and dim.β[2]/ = r. Write sj =
.s′

j, [1], s′
j, [2]/

′; then

J∑
j=1

θjs
.3/
j {.s

.1/
j −β′

[1]s
.2/
j, [1]/−β′

[2]s
.2/
j, [2]}=0r:

Knowledge of β[1] puts us back to the just-identified case, so assumption 1 holds under weak assumptions
and so p.θ,β[2]/ can be computed by using the area formula.

A.6.4. Overidentification

Definition 2. If r > p so m � 1 (e.g. r =2, p=1 and m=2) then the system is called overidentified.

We split θ= .θ1, : : : , θJ−1/
′ as θ[1] = θG and θ[2] = θGc , where G ∪Gc ={1, 2, : : : , J − 1}, dim.G/=J −m,

dim.Gc/=m−1, and build λ=θ′
[1], φ= .θ′

[2],β
′/′. Hence λ is a subset of θ with J −m elements, whereas φ

contains all the other probabilities and the entire β. Then assumption 1 holds if we can find a G such that
.θ′

[2],β
′/′ = t.θ′

[1]/.

A.6.4.1. Example 11. Again consider g.s,β/= s.3/.s.1/ −β′s.2//, dim.s.2//=p and dim.s.3//= r. If
p < r then split θ= .θ′

[1], θ
′
[2]/

′, where dim.θ′
[2],β

′/= r, so there are r moment conditions and r unknowns.
Given θ[1], we can then solve for the extended set of parameters .θ′

[2],β
′/, where

dim.θ[1]/∑
j=1

θjs
.3/
j .s

.1/
j −β′s.2/

j /+
J∑

j=dim.θ[1]/+1
θjs

.3/
j .s

.1/
j −β′s.2/

j /=0r:

This is typically exactly identified, but non-linear because of the θjβ-terms for j =dim.θ[1]/+1, : : : , J .

A.6.5. Constrained Hamiltonian Monte Carlo sampling algorithm
Let qn = .βn, θn/ be the current state of the Markov chain. Following Lelièvre et al. (2012), by setting
M = .Δt=2/I, γ=2I and σσ′ =4I, one can obtain the following sampling scheme.

Step 1: draw the new momentum

un+1=4 =
√(

Δt

8

)
[I −∇ξ.qn/{∇ξ.qn/′n}−1∇ξ.qn/′]σGn,

where Gn is a vector of independent and identically standard Gaussian random variables.
Step 2: integrate the constrained Hamiltonian,

(a) Obtain λn+1=2 by solving the following system of p non-linear equations,

ξ{qn +2un+1=4 −Δt∇V.qn/+2∇ξ.qn/λn+1=2}=0,

and
(b) set

un+1=2 =un+1=4 − Δt

2
∇V.qn/+∇ξ.qn/λn+1=2,

qn+1 =qn +2un+1=4 −Δt∇V.qn/+2∇ξ.qn/λn+1=2,

un+3=4 =un+1=2 − Δt

2
∇V.qn+1/+∇ξ.qn+1/{∇ξ.qn+1/′n+1}−1∇ξ.qn+1/′

{
Δt

2
∇V.qn+1/−pn+1=2

}
:



Moment Conditions and Bayesian Non-parametrics 41

Step 3: accept the new state qn+1, with probability

pacc = exp{−H.qn+1, un+3=4/+H.qn, un+1=4/}∧1:

Otherwise, we set qn+1 =qn.
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