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The use of statistical methods for anomaly detection has become of interest to researchers
in many subject areas. Structural health monitoring in particular has benefited from the
versatility of statistical damage-detection techniques. We propose modeling structural
vibration sensor output data using nonlinear time-series models. We demonstrate the
improved performance of these models over currently used linear models. Whereas ex-
isting methods typically use a single sensor’s output for damage detection, we create a
combined sensor analysis to maximize the efficiency of damage detection. From this
combined analysis we may also identify the individual sensors that are most influenced by
structural damage. !DOI: 10.1115/1.3025827"

1 Introduction
The extensive literature on structural health monitoring #SHM$

has documented the critical importance of detecting damage in
aerospace, civil, and mechanical engineering systems at the earli-
est possible time. For instance, airlines may be interested in maxi-
mizing the lifespan and reliability of their jet engines, or govern-
mental authorities might like to monitor the condition of bridges
and other civil infrastructures in an effort to develop cost-effective
lifecycle maintenance strategies. These examples indicate that the
ability to efficiently and accurately monitor all types of structural
systems is crucial for both economic and life-safety issues. One
such monitoring technique is vibration-based damage detection,
which is based on the principal that damage in a structure, such as
a loosened connection or crack, will alter the dynamic response of
that structure. There has been much recent work in this area; in
particular, Doebling et al. !1" and Sohn et al. !2" presented de-
tailed reviews of vibration-based SHM. Because of random and
systematic variability in experimentally measured dynamic re-
sponse data, statistical approaches are necessary to ensure that
changes in a structure’s measured dynamic response are a result of
damage and not caused by operational and environmental vari-
abilities. Although much of the vibration-based SHM literature
focuses on deterministic methods for identifying damage from
changes in dynamic system response, we will focus on approaches
that follow a statistical pattern recognition paradigm for SHM !3".
This paradigm consists of the four steps: #1$ operational evalua-
tion, #2$ data acquisition, #3$ feature extraction, and #4$ statistical
classification of features. The work presented herein focuses on
steps #3$ and #4$ of this paradigm.

One approach for performing SHM is to fit a time-series pre-
dictive model such as an autoregressive #AR$ model to each sen-
sor output using data known to be acquired from the structure in
its undamaged state. These models are then used to predict sub-
sequent measured data, and the residuals #the difference between
the model’s prediction and the observed value$ are the damage-
sensitive feature that is used to check for anomalies. This process
provides many estimates #one at each time step$ of a single-
dimension feature, which is advantageous for subsequent statisti-

cal classification. The logic behind this approach is that if the
model fit to the undamaged sensor data no longer predicts the data
subsequently obtained from the system #and hence the residuals
are large and/or correlated$, there has been some sort of change in
the process underlying the generation of the data. This change is
assumed to be caused by damage to the system. These linear time-
series models have been used in such a damage-detection process
that include applications to a wide range of structures and associ-
ated damage scenarios including cracking in concrete columns
!4,5", loose connections in a bolted metallic frame structure !6",
and damage to insulation on wiring !7". However, the linear nature
of this modeling approach limits the scope of application and the
ability to accurately assess the condition of systems that exhibit
nonlinearity in their undamaged state. In this paper, we demon-
strate how support vector machines #SVMs$ may be used to create
a nonlinear time-series model that provides an alternative to these
linear AR models.

Once a model has been chosen and the predictions from this
model have been compared with the actual sensor data, there are
several statistical methods for analyzing the resulting residuals.
Sequential hypothesis tests, such as the sequential probability ra-
tio test !6", may be used to test for changes in the residuals.
Alternatively, statistical process control procedures, typically in
the form of control charts, may be used to indicate abnormalities
in the residuals !4". In addition, sliding window approaches look
at the features of successive subsets of data to detect anomalies
!7". For example, the sliding window approach of Ma and Perkins
!8" looks at thresholds for the residuals such that the probability of
an undamaged residual exceeding this threshold is 5%. A subset of
n consecutive data points are then checked, and large values of the
number g of points exceeding the threshold indicate damage,
where g has a binomial distribution #i.e., g%bin#n ,0.05$$.

To date, most of these time-series modeling approaches analyze
data from one sensor at a time, and typically some sort of scheme
is used to determine how many sensors need to indicate damage in
order to trigger a system check !9". As an alternative, in this paper
we look at a statistically based method for combining multiple
sensor output. From this combined output analysis, we can estab-
lish the existence of damage and also determine which sensors are
contributing to the anomalous readings in an effort to locate the
damage within the sensor network’s spatial distribution. Previ-
ously Sohn et al. !5" used principal component analysis to com-
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bine data from an array of sensors, but this study only examined
these combined data in an effort to establish the existence of
damage.

We first present a summary of the SVM approach to nonlinear
time-series modeling. This procedure is illustrated on numerically
generated data with artificial anomalies added to the baseline sig-
nal in an effort to simulate damage. This time-series modeling
approach is then compared with linear AR models. Next the SVM
method is coupled with a statistical analysis procedure that com-
bines modeling results from multiple sensors in an effort to both
establish the existence and the location of the damage. This pro-
cedure is applied to data from a laboratory test structure with
damage that results in local nonlinear system response.

2 SVM-Based SHM
Existing methods for performing damage detection extract

damage-sensitive features from data acquired on the undamaged
system, and then use changes in those features as an indicator of
damage. An AR model can be fit to the undamaged sensor output,
and the residuals from predictions of subsequent data using this
baseline model are then monitored for statistically significant
changes that are assumed to be caused by damage. Specifically, an
AR model with p autoregressive terms, AR#p$, applied to sensor k
may be written as

xt
k = &

j=1

p

! j
k · xt−j

k + "t
k #1$

where xt
k is the representation of the measured signal at discrete

times t from the kth sensor, ! j
k are the AR coefficients or model

parameters, and "t
k is an unobservable noise term. Thus an AR

model works by fitting a simple linear model to each point with
the previous p observed points as dependent variables. Note that
an n point time-series will yield n-p equations that can be used to
generate a least square estimate of the AR coefficients or the
Yule–Walker method can be used to solve for the coefficients !10".
Autoregressive models work particularly well when modeling the
response of linear, time-invariant systems. If the undamaged sys-
tem is nonlinear, the AR process gives the best linear fit to the
measured response, but there is no guarantee that this model will
accurately predict responses obtained when the system is sub-
jected to other inputs.

Because of the broad array of structural health monitoring prob-
lems, employing a linear model confines the scope of problems
for which the AR methodology is appropriate. We thus seek to
extend the fidelity of this general damage-detection approach by
employing a nonlinear AR-type model based on SVMs, which
have seen widespread use in machine learning and statistical clas-
sification fields. To simplify future development, we denote the
vector 'xt−p

k , . . . ,xt−1
k ( as xt−p:t−1

k . SVMs have many features that
make them a more appropriate choice for SHM based on time-
series analysis. With the right settings and the appropriate train-
ing, they are able to model any nonlinear relationship between the
current time point xt

k and the p previous time points xt−p:t−1
k , they

are well suited for high-dimensional problems, and the methodol-
ogy is easily generalized and is highly adaptable. Although SVMs
have been used for SHM before !11–15", these approaches pre-
dominantly focus on one and two class SVMs, which are used for
outlier detection and group classification, respectively. Our ap-
proach is unique in its combination of support vector regression,
autoregressive techniques, and residual error analysis. Thus while
earlier approaches look at classifying sections of the time-series
response as damaged or undamaged directly #the dependent vari-
able being a binary indicator$, our methodology works by using
support vector regression to model the raw time-series data, then
subsequently predicting damage by monitoring the residuals of the
model. We follow the development of SVMs for regression of
Smola and Schölkopf !16" and Ma and Perkins !8".

First, assume we have data from a set of K sensors and we have
measurements without damage for time t=1, . . . , t0 #i.e., if there is
damage, it occurs after time t0$. Next we must decide the order p
of our model. There are many methods for selecting p, such as
partial autocorrelation or the Akaike information criterion #AIC$,
which are discussed in more detail in Ref. !4". In general, we seek
the lowest order model that captures the underlying physical pro-
cess and hence will generalize to other data sets. As with linear
AR modeling, we create the training set on which to build our
SVM-based model by using each observation as the dependent
variable and the previous p observations as independent variables.
Our training samples are thus '#xt−p:t−1

k ,xt
k$ , t= p+1, . . . , t0(.

Ideally we would like to find a function f such that
f#xt−p:t−1

k $=xt
k for all k and t# t0. However, the form of f is often

restricted to the class of linear functions #as is the case for AR
models$.

f#xt−p:t−1
k $ = )w,xt−p:t−1

k * #2$

where ),* denotes the dot #or inner$ product and w is a vector of
model parameters. This restricted form makes perfect fit of the
data impossible in most scenarios. As a result, we allow the pre-
diction using f to have an error bounded by " and find w under
this constraint. With the recent advances in penalized regression
methods such as ridge regression and lasso, the improved predic-
tion performance of shrunken #or smoothed$ models is now well-
understood !17,18". Thus in order to provide a model that maxi-
mizes prediction performance, we seek to incorporate shrinkage
on the model parameters w. Such shrunken w may be found by
minimizing the Euclidean norm subject to the error constraint ",
namely,

minimize 1
2 +w+2

#3$

subject to ,xt
k − )w,xt−p:t−1

k * # "

)w,xt−p:t−1
k * − xt

k # "
-

This model relies on the assumption that a linear model is able
to fit the data to within precision ". However, typically such a
linear model does not exist, even for moderate settings of ". As
such, we introduce the slack variables $t

+, $t
− to allow for devia-

tions beyond ". The resulting formulation is

minimize 1
2 +w+2 + C &

t=p+1

t0

#$ t
+ + $ t

−$

subject to ,xt
k − )w,xt−p:t−1

k * # " + $ t
+

)w,xt−p:t−1
k * − xt

k # " + $ t
−- #4$

The constant C controls the trade-off between giving small w and
penalizing deviations larger than ". In this form, we see that only
points that lie outside of the bound " have an effect on w. Figure
1 illustrates the process graphically.

Although this optimization problem is straightforward to carry
out, the extension to nonlinearity is revealed by the dual formula-
tion. We thus proceed by constructing a Lagrange function of the
above by introducing a set of dual variables.

L ª 1
2

+w+2 + C &
t=p+1

t0

#$ t
+ + $ t

−$ − &
t=p+1

t0

%t
+#" + $ t

+ − xt
k + )w,xt−p:t−1

k *$

− &
t=p+1

t0

%t
−#" + $ t

− − xt
k + )w,xt−p:t−1

k *$ − &
t=p+1

t0

#&t
+$ t

+ + &t
−$ t

−$

#5$

where the dual variables %t
+, %t

−, &t
+, and &t

− are understood to be
non-negative. It can be shown that this function has a saddle point
at the optimal solution, and hence,
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!L

!w
= w − &

t=p+1

t0

#%t
+ − %t

−$xt−p:t−1
k = 0

!L

!$t
+ = C − %t

+ − &t
+ = 0 #6$

!L

!$t
− = C − %t

− − &t
− = 0

Substituting these saddle point constraints into L yields the fol-
lowing dual optimization problem:

maximize .−
1
2 &

t,t!=p+1

t0

#%t
+ − %t

−$#%t!
+ − %t!

− $)xt−p:t−1
k ,xt!−p:t!−1

k *

− " &
t=p+1

t0

#%t
+ + %t

−$ + &
t=p+1

t0

xt
k#%t

+ − %t
−$ /

#7$

subject to ,xt
k − )w,xt−p:t−1

k * # " + $ t
+

)w,xt−p:t−1
k * − xt

k # " + $ t
−-

Notice that by the saddle point constraint
#w=&t=p+1

t0 #%t
+−%t

−$xt−p:t−1
k $ we may write f as

f#xt−p:t−1
k $ = &

t!=p+1

t0

#%t
+ − %t

−$)xt!−p:t!−1
k ,xt−p:t−1

k * #8$

In this way w may be viewed as a linear combination of the
training points xt−p:t−1

k . Note also that in this formation both f and

the corresponding optimization can be described in terms of dot
products between the data. In this way, we can transform the data
using the function ' :Rp→F and compute the dot products in the
transformed space. Such mappings allow us to extend beyond the
linear framework presented above. Specifically, the mapping al-
lows us to fit linear functions in F, which, when converted back to
Rp, are nonlinear. A simplified example of this process is illus-
trated for a mapping ' :R2→R3, namely '#x ,y$= #x2 ,x0y ,y$, in
Fig. 2. Here the data are generated using the relationship y=x2.

To make use of this transformed space, we replace the dot prod-
uct term with

)'#xt!−p:t!−1
k $,'#xt−p:t−1

k $* #9$

If F is of high dimension, then the above dot product will be
extremely expensive to compute. In some cases, however, there is
a corresponding kernel that is simple to compute. For example,
the kernel k#x ,y$= #x ·y$d corresponds to a map ' into the space
spanned by all products of exactly d dimensions in Rp. When
d , p=2, for instance, we have

#x · y$d = 11x1

x2
2 · 1y1

y2
222

= 33 x1
2

02x1x2

x2
2 4 · 3 y1

2

02y1y2

y2
2 44

= #'#x$,'#y$$ #10$

defining '#x$= #x1
2 ,02x1x2 ,x2

2$. More generally, it has been shown
that every kernel that gives a positive matrix #k#x ,y$$ij has a cor-
responding map '#x$ !16". One such family of kernels we focus
on is radial basis function #RBF$ kernels, which have the follow-
ing form:

k#x,y$ = exp#− +x − y+2/#2(2$$ #11$

where (2 is the kernel variance. This parameter controls fit, with
large values leading to smoother functions and small values lead-
ing to better fit. In practice, moderate values are preferred as a
trade-off between model fit and prediction performance.

Whereas a traditional AR#p$ model employs a linear model that
is a function of the previous p time points, the SVM model looks
at the previous p time points compared with all groups of p suc-
cessive data points from the training sample. Specifically, the
model has the form

f#xt−p:t−1
k $ = &

j=p+1

t0

! jk#x j−p:j−1
k ,xt−p:t−1

k $ #12$

Typically only a small fraction of the coefficients ! j are nonzero.
The corresponding samples x j−p:j−1

k are called support vectors of

Fig. 1 Illustration of linear support vector regression fit

Fig. 2 Illustration of mapping to an alternate space to induce linearity
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the regression function because only these select samples are used
in the formulation of the model. Once we have trained our model
above, we use it to predict each future observation. We then take
the residuals and use them as an indicator of structural change.
For our purposes we employ a control chart to monitor if the
system generating the data has changed. In this discussion the
control chart is created by constructing 99% control lines that
correspond to 99% confidence intervals for the residuals of the
model fit to the undamaged data assuming the residuals are nor-
mally distributed. This normality assumption is further discussed
in the experimental results below. These control lines are then
extended through the remaining #potentially damaged$ data, and
damage is indicated when a statistically significant number of re-
siduals, in this case more than 1%, lie outside these lines. Note
that damage can also be indicated when the residuals no longer
have a random distribution even though they may not lie outside
the control lines.

RBF neural networks, which have the same form as Eq. #12$,
have previously been used to perform SHM !19". However, fitting
these networks requires much more user input such as selecting
which ! j are nonzero as well as selecting the corresponding train-
ing points. In addition, the fitting of the neural network model is a
rather complicated nonlinear optimization process relative to the
simple quadratic optimization used in the support vector frame-
work. Although the SVM models are more easily developed,
Schölkopf et al. !20" demonstrated that SVMs still more accu-
rately predict the data than the RBF neural networks despite their
simplicity.

Example: Simulated damage. We now compare the perfor-
mance of the SVM-based damage-detection method to a tradi-
tional AR model with coefficients estimated by the Yule–Walker
method !10". The data are generated as follows for discrete time
points t=1, . . . ,1200:

xt
1 = sin3#400)t/1200$ + sin2#400)t/1200$ + sin#200)t/1200$

+ sin#100)t/1200$ + * + " #13$
where " is Gaussian random noise with mean 0 and standard

deviation 0.1, and * is a “damage” term. Three different damage
cases are added to this time-series at various times as defined by

* =.
"1, t = 600, . . . ,650

1
2sin#1000)t/1200$ , t = 800, . . . ,850

"2, t = 1000, . . . ,1050

0 otherwise
/ #14$

where "1 and "2 are Gaussian random noises with means 0 and 1,
and standard deviations 0.5 and 0.2, respectively. Through the use
of *, we attempt to simulate several different types of damage to
compare the models’ performance handling each. This raw signal
is plotted in Fig. 3 where it can be seen that the changes caused by
the damage are somewhat subtle.

The order p for both models was set at 5, as determined from
the autocorrelation plot in Fig. 4. This plot is the measure of
correlation between successive time points for a given time lag.
We see from the plot that after a lag of 5, the correlation is quite
small, and hence little information is gained by including a longer
past history p. The autocorrelation function is a standard method
for determining model order for traditional AR models, and as
such should maximize this method’s performance, ensuring
the SVM-based model is not afforded an advantage in this
comparison.

The results of applying both the SVM model and a traditional
AR model to the undamaged portion of the signal between time
points 400 and 600 are shown in Fig. 5 where the signals pre-
dicted by these models are overlaid on the actual signal. A quali-
tative visual assessment of Fig. 5 shows that the SVM more ac-
curately predicts this signal. A quantitative assessment is made by
examining the distribution of the residual errors obtained with
each model. The standard deviation of the residual errors from the
SVM model is 0.26 while for the traditional AR it is 0.71, again
indicating that the SVM is more accurately predicting the undam-
aged portion of this time-series.

In order for a model to excel at detecting damage, it must fit the
undamaged data well #i.e., small and randomly distributed re-

0 200 400 600 800 1000 1200

2
!

0
2

Time

e
d
util

p
m
A

Fig. 3 Raw simulated data with highlighted artificial damage

Fig. 4 Autocorrelation plot of simulated data
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sidual errors$ while fitting the damaged data poorly as identified
by increased residual errors with possibly nonrandom distribu-
tions. In other words, the model must be sensitive to distributional
changes in the data that result from damage. To quantify such
changes, a control chart is developed based on the undamaged
portion of the time-series to establish statistically based thresholds
for the damage-detection process. As mentioned earlier, this con-
trol chart is calculated based on the fit to the undamaged data,
specifically 99% confidence lines are drawn based on the undam-
aged residual error data and carried forward for comparison on the
potentially damaged data. It is in this part of the process that the
SVM’s ability to more accurately represent the data enhances the
damage-detection process. The 99% confidence lines for the SVM
are much closer to the mean value of the residual errors and,
hence, will more readily identify small perturbations to the under-
lying system that produce changes in the residual error distribu-
tion. In addition, the traditional AR model shows a trend in the
residuals, indicating lack of model fit, even in the undamaged
case. We see that during the times of damage the residuals for the
SVM-based model exceed the control limits more than occurs
with the residuals from the traditional AR model. In fact, the latter
method would likely miss the damage between time points 1000
and 1050, where only one point exceeds the threshold versus over
10 for the SVM-based model. This result can be seen in Fig. 6.

Each method will perform differently for different types of
damage; therefore, it is of interest to determine when each method
will be successful in indicating damage. Because the traditional
AR model fits a single model to the entire data, model fit will be
very poor if the data is nonstationary #for instance, if the excita-
tion is in the form of repeated impacts$. Additionally, because the
traditional AR model as presented above does not contain a mov-
ing average term, it will continue to fit when damage is in the
form of a shift up or down in the raw time-series such as that
which may result in strain reading when yielding occurs #demon-
strated by the third damage scenario above$. Conversely, the
SVM-based method works by comparing each length of p data to
all corresponding sets in the training set. Thus, if a similar se-
quence exists in the training set, we can expect the fit to be quite
good. We see two scenarios in which the SVM-based method will
perform poorly. First, if there is some initial damage in the “un-
damaged” scenario, and similar damage occurs in the testing set,
the SVM model will likely fit this portion quite well. Second, if
damage manifests itself in such a way that the time-series data are
extremely similar to the undamaged time-series, the SVM meth-
odology will be unable to detect it. However, we should empha-
size that other methods, including the AR model, will suffer in
such scenarios as well. As an attempted solution when the sensi-
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Fig. 5 SVM „top… and linear AR models „bottom… fit to subset of data
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Fig. 6 Residuals from SVM „top… and linear AR models „bottom… applied to simulated data. The
99% control lines based on the residuals from the undamaged portion of the signal are shown
with the horizontal lines.
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tivity of the method to a given type of damage is unknown and
simulation tests are impossible, various damage-detection meth-
ods could potentially be combined to boost the detection accuracy.

3 Joint Online SHM
In the undamaged state, a Gaussian distribution can often ap-

proximate the residuals from fitted models or control charts can be
developed to invoke the central limit theorem and force some
function of the residual errors to have a Gaussian distribution such
as with an x-bar control chart !4". If we have K sensors, each of
whose residuals are Gaussian distributed, we would like a way of
combining these residuals to come up with a damage-detection
method that examines all K sensors. Noticing that the sum of K
squared standard Gaussian random variables is distributed as a
chi-squared random variable with K degrees of freedom, we
square the residuals from each sensor #after they are normalized to
have mean 0 and variance 1 based on the undamaged data$ and
add them together to create a new combined residual. These new
combined residuals follow a chi-squared distribution, and hence
we can make probabilistic statements about the residuals being
typical or not #indicative of damage$. Specifically, consider the
combined residuals at some time point t.

&
k=1

K

#rt
k$2 #15$

where rt
k is the normalized residual at time t for sensor k. Assum-

ing the original residuals are Gaussian distributed, this random
variable will have a chi-squared distribution with K degrees of
freedom. Note that even when the original residuals are not ap-
proximately Gaussian, we may still employ a control chart on the
combined residuals to give probabilistic statements regarding
damage. For instance, when the residual errors from the fitted
model have thicker tails than Gaussian, control charts must be
employed to make probabilistic statements of the combined re-

sidual. However, as we will see in the following example, the
residual errors are often very close to Gaussian.

In addition to these combined residuals allowing us to make
statements regarding damage from multiple sensor output, they
also provide us with a mechanism for determining which sensors
are most influenced by the damage. This latter property is of par-
ticular importance for damage location. If this combined residual
is large, and hence we determine that there is damage, we can
look at the values #rt

k$2 for each sensor and from their magnitudes
determine which sensors contributed the most to this large com-
bined residual. If we detect damage over a range of values, we
may average #rt

k$2 over this range for each sensor to determine
how much each sensor is contributing to the anomalous reading.

Example: Experimental data. We look at joint online SHM us-
ing SVMs on experimental data from a structure designed to pro-
duce nonlinear response when it is “damaged.” The structure is a
three-story building #Fig. 7$ consisting of aluminum columns and
plates with bolted joints and a rigid base that is constrained to
slide horizontally on two rails when excited by an electrodynamic
shaker. Each floor is a 30.5+30.5+2.5 cm3 plate and is sepa-
rated from adjacent floors by four 17.7+2.5+0.6 cm3 columns.
To induce nonlinear behavior, a 15.0+2.5+2.5 cm3 column is
suspended from the top floor and a bumper is placed on the sec-
ond floor. The contact of this suspended column with the bumper
results in nonlinear effects. The actual physical mechanism used
to introduce the nonlinearity into the structure does not simulate a
specific damage scenario. However, it does introduce response
characteristics that would be observed in a structure where the
damage results in an alternating stiffness state such as a crack
opening and closing or the rattling of a loose connection. It is
noted that this system is not scaled from a “real-world” prototype
based on a rigorous similitude analysis.

The initial gap between the suspended column and the bumper
is adjusted to simulate different levels of damage. In our test data
we employ the case where the column is set 0.05 mm away from

Three-story Building Structure to Detect Nonlinear Effects EI-LANL, October 2008
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Fig. 7 Diagram of the experimental structure
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the bumper. The undamaged data is obtained when the bumper
and suspended column do not contact each other. The structure is
subjected to a random base excitation from the shaker in both its
undamaged and damaged conditions. Accelerometers mounted on
each floor record the response of the structure to these base exci-
tations. A more detailed description of the test structure and the
data obtained is available online.2

We first concatenate the undamaged data with the damaged data
to demonstrate that the proposed methodology adequately detects
the damage. The SVM time-series models are developed for each
of the accelerometer measurements from the undamaged data as
follows.

1. Select the number of time lags that will be used in the time-
series models. In this case, eight time lags were used based
on the AIC. Note that the number of time lags is analogous
to the order of an AR model.

2. Select the parameters of the SVM model, including the ker-
nel type and corresponding parameters as well as C and ",
which control model fit as described earlier. In our case, we
used a Gaussian kernel with variance 1 and set C=1 and
"=0.1. We have found the methodology to be robust to
choices of variance ranging over an order of magnitude. In
addition, C could be increased to force fitting of extreme
values, and " could be lowered to enforce a closer fit to the
training data.

3. Pass the data #arranged as dependent variable and previous p
points as independent variables$ to the optimization de-
scribed by Eq. #7$. In this case, we use the first 6000 undam-
aged points as training data. This step is handled by the wide
variety of support vector machine software available cover-
ing multiple computing environments including MATLAB and
R. In particular, we employ the LIBSVM library with accom-
panying MATLAB interface !21".

4. Once the SVM model is trained #i.e., the ! j in Eq. #12$ are
selected$ in step 3, make predictions based on the new test
data from the structure in its undamaged or damaged condi-
tion. Next, calculate the residual between the measured data
and the output of the time-series prediction.

5. Square and add the residuals from each sensor as described
by Eq. #15$. Build a control chart for these combined residu-
als to detect damage #perhaps in conjunction with statistical
tests such as a sliding window approach$.

Note that steps 1–4 of this process are applied to each time-series
recorded by the four accelerometers shown in Fig. 7.

First we will revisit the normality assumption that was made in
constructing the control chart. Figure 8 shows the resulting Q-Q
plot for the residuals from the SVM model fit to sensor four data

obtained with the structure in its undamaged state. The Q-Q plot
compares the sample quantiles of the residuals to theoretical quan-
tiles of a Gaussian distribution. We see in this figure that the
sample quantiles fall very close to the theoretical line, and hence
our residuals are approximately Gaussian.

Figure 9 shows the residual errors from the SVM fit to each of
the accelerometer readings, respectively, and the corresponding
99% control limits that are based on the first 6000 points from the
undamaged portion of each signal. There are 8192 undamaged
points and 8192 damaged ones. Thus when we concatenate the
data, the damage occurs at time point 8193 of 16,384. Figure 10
shows the density of the normalized residual errors from all the
sensors that have been combined according to Eq. #15$. We see
that the distribution is very nearly chi-squared. In situations where
the original residuals are not normal, this result will not be true,
and hence probabilistic statements regarding the presence of dam-
age must be made based on control charts.

Figure 11 shows the combined residuals as a function of time.
The points in the upper portion of the plot show damage indica-
tion using the sliding window approach of Ma and Perkins !8", as
described in the introduction and based on the 99% control lines.
Specifically we use a window size of 6 which, when combined
with the 99% control limit #dashed line in Fig. 11$, detects dam-
age whenever one or more of the six points in the window exceeds
the control line #equivalent to binomial probability of 0.05$. We
see from Fig. 9 that sensors 3 and 4 are most influenced by dam-
age. This result is expected as the bumper is mounted between
these two sensors. In fact, if we look at the average values of #rt

k$2

#which are the individual squared residuals for sensor k$ over the
damaged section for each sensor, we see that the first two sensors
have values 0.96 and 1.24, whereas the second two sensors have
values 59.80 and 38.2, respectively. Thus from this numerical rat-
ing we can see that sensors 3 and 4 are most influenced by the
damage, which agrees with the result shown in Fig. 9.

From this analysis it is evident that we can use the combined
residuals to establish the presence of damage in a statistically
rigorous manner and then examine the individual sensor residuals
in an effort to locate the sensors most influenced by the damage.
This latter information can be used to help locate the damage
assuming that the damage is confined to a discrete location such
as the formation of a crack in a welded connection. Further inves-
tigation is needed to assess how this procedure could be used to
locate damage for more distributed damage such as that associated
with corrosion.

4 Conclusion
Although the application of statistical techniques to structural

health monitoring has been investigated in the past, these tech-
niques have predominantly been limited to identifying damage-
sensitive features derived from linear models fit to the output from
individual sensors. As such, they are typically limited to identify-
ing only that damage has occurred. In general, these methods are
not able to identify which sensors are associated with the damage
in an effort to locate the damage within the resolution of the
sensor array.

To improve on this approach to damage detection, we have
applied support vector machines to model sensor output time his-
tories and have shown that such nonlinear regression models more
accurately predict the time-series when compared with linear au-
toregressive models. Here the metric for this comparison is the
residual errors between the measured response data and predic-
tions of the time-series model.

The support vector machine autoregressive method is superior
to traditional linear AR in both its ability to handle nonlinear
dynamics as well as the structure of the model. Specifically, the
support vector approach compares each new testing point to the
entire training set whereas the traditional AR model finds a simple
linear relationship to best describe the entire training set, which is
then used on the testing data. For example, when dealing with2www.lanl.gov/projects/ei.

Fig. 8 Q-Q plot of residuals from SVM model

Journal of Vibration and Acoustics APRIL 2009, Vol. 131 / 021004-7



transient impact data, the AR model will fail in trying to fit the
entire time domain with a simple linear model. Whereas in the
past RBF neural networks have been used to tackle this problem,
these networks require significant user input and complex meth-
ods for fitting the model to the training data, and hence the simple
support vector framework is preferred.

Furthermore, we have also shown how the residuals from the
SVM prediction of each sensor time history may be combined in
a statistically rigorous manner to provide probabilistic statements

regarding the presence of damage as assessed from the amalgam-
ation of all available sensors. In addition, this methodology allows
us to pinpoint the sensors that are contributing most to the anoma-
lous readings and therefore locate the damage within the sensor
network’s spatial resolution. The process was demonstrated on a
test structure where damage was simulated by introducing an im-
pact type of nonlinearity between the measured degrees of free-
dom. The authors acknowledge that the approach has only been
demonstrated on a structure that was tested in a well-controlled
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laboratory setting. This approach will have to be extended to
structures subjected to real-world operational and environmental
variabilities before it can be used in practice. However, the ap-
proach has the ability to adapt to such changes through the analy-
sis of appropriate training data that span these conditions. There-
fore, follow-on studies will focus on applying this approach to
systems with operational and environmental variabilities as well
as systems that exhibit nonlinear response in their undamaged
state.
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Fig. 11 Combined residuals from all four sensors. The 99% control line is shown as the dashed horizontal line. Sliding
window damage indicators are indicated by the boxes across the top of the plot.
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