
Chapter 12
PAWL-Forced Simulated Tempering

Luke Bornn

Abstract In this short note, we show how the parallel adaptive Wang–Landau
(PAWL) algorithm of Bornn et al. (J Comput Graph Stat, to appear) can be used to
automate and improve simulated tempering algorithms. While Wang–Landau and
other stochastic approximation methods have frequently been applied within the
simulated tempering framework, this note demonstrates through a simple example
the additional improvements brought about by parallelization, adaptive proposals,
and automated bin splitting.

12.1 A Parallel Adaptive Wang–Landau Algorithm

The central idea underlying Wang–Landau [6] and related algorithms is that instead
of generating samples from a target density π, it is sometimes more efficient to
instead sample a strategically biased density π̃. In the case of Wang–Landau, the
goal is to sample

π̃(x) = π(x)× 1

d

d∑

i=1

IXi
(x)∫

Xi
π(x)dx

, (1)

where IXi
(x) is equal to 1 if x ∈ Xi and 0 otherwise. Interestingly, this biased

target ensures each of the partitions of the space (Xi)
d
i=1 are visited equally:∫

Xi
π̃(x)dx =

∫
Xj

π̃(x)dx, ∀i, j ∈ (1, . . . , d). Additionally, the restriction of
the modified distribution π̃ to each set Xi coincides with the restriction of the
target distribution π to this set up to a multiplicative constant, namely for all i,
π̃(x) ∝ π(x), ∀x ∈ Xi.
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While the biased density π̃(x) has desirable properties, an obvious problem is
that calculating

∫
Xi

π(x)dx is not straightforward. As such, the Wang–Landau
algorithm creates estimates θt of these quantities at each step t. Algorithm 1
provides psuedo-code for the algorithm. In the full version of the algorithm, the step

Algorithm 1 Simplified Wang–Landau algorithm
1: Partition the state space into d regions {X1, . . . ,Xd} along a reaction coordinate ξ(x).
2: First, ∀i ∈ {1, . . . , d} set θ(i)← 1.
3: Choose a decreasing sequence {γt}, typically γt = 1/t.
4: Sample X0 from an initial distribution π0.
5: for t = 1 to T do
6: Sample Xt from Pθt−1

(Xt−1, ·), a transition kernel with invariant distribution π̃θt−1
(x).

7: Update the bias: log θt(i)← log θt−1(i) + γt(IXi
(Xt)− d−1).

8: Normalize the bias: θt(i)← θt(i)/
∑d

i=1 θt(i).
9: end for

size γt is only reduced when all of the regions {X1, . . . ,Xd} have been uniformly
explored as measured by the flat histogram criterion maxi∈[1,d] |ν(i)− d−1| < c/d
where ν(i) is the proportion of samples within Xi since the last time the flat
histogram criterion was met. Here c is a user-specified threshold. The reader is
referred to [3] for a full description and discussion of the algorithm, as well as details
on stabilizing the algorithm through parallelization, introducing adaptive proposals,
and automating the partitioning of the space. These three improvements, applied to
simulated tempering, will be the focus of this work.

12.2 Simulated Tempering

The use of stochastic approximation algorithms, including Wang–Landau, within
simulated tempering has been suggested by various authors (see, e.g., [1,4]). In this
note, we further examine the improvements proposed in [3], namely parallelization,
adaptive proposals, and automatic partitioning of the space. The primary idea of
simulated tempering is to sample from a tempered distribution πT (x) = π(x)1/T

for some temperature T . The algorithm proceeds by setting a temperature ladder
T = 1, . . . , Tmax and running a Markov chain on the pair (x, T ). As such, the
chain explores the state space X while moving up and down the temperature ladder.
Readers are referred to [4, 5] for further details. Of note for our purposes, however,
is that one is able to specify pseudo-priors on the different steps of the ladder to
ensure equal occupation numbers—time spent in each step of the ladder—which is
a task well suited for stochastic approximation.

To test these (potential) improvements to simulated tempering, we employ a
small bimodal density. Specifically, we set π(x) to be an equally weighted mixture
of two standard normal distributions, one centered at −15 and the other at 15.
As such, the distribution has two modes (at x = −15 and x = 15) with a large
low-density valley separating them. As a result, estimating the mean (0) is a natural
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Fig. 12.1 RMSE for estimating the mean in the bimodal density for various simulated tempering
configurations. We see that Wang–Landau (provided c is small) and stochastic approximation with
deterministic step size decreases (provided t0 is large) both perform well

challenge for any sampler. We run 1, 000 chains each of length N (for various N )
and calculate the root mean squared error (RMSE) between the posterior mean
(calculated from all states with T = 1) and the true mean of 0. We compare
standard simulated tempering using Metropolis–Hastings with uniform pseudo-
priors (using a Gaussian random walk with standard deviation 10, and temperatures
T = 1, 2, . . . , 9, 10) to that using stochastic approximation adjusted such that the
pseudo-priors ensure equal occupation numbers. See [1] for details. We use standard
stochastic approximation with step sizes γt = t0/max(t0, t) for t0 = 1, N/4, N/2.
In other words, the step size starts decreasing after 1 iteration, N/4 iterations, or
N/2 iterations, respectively. We also explore Wang–Landau, which automatically
decreases the step size after a flat histogram criterion is met. We look at three values
of the user-specified tuning parameter c, namely c = 0.01, 0.1, 0.5. Figure 12.1
displays the RMSE as a function of N for each algorithm. We see that all of the
stochastic approximation algorithms (including Wang–Landau) perform similarly in
this simple example. It has been argued, however, that in more complex situations,
Wang–Landau will outperform stochastic approximation with deterministically
decreasing step size [1].

In Fig. 12.2 we similarly compare the simple Metropolis–Hastings simulated
tempering algorithm to the Wang–Landau version (using c = 0.1) with and without
adapting the proposal standard deviation (set to target an acceptance ratio of 0.234);
see [3] for specifics. It is clear that adaptation in the proposal mechanism provides
significant gains to both the standard simulated tempering algorithm as well as
the Wang–Landau version. Further improvements might be made by considering
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Fig. 12.2 RMSE for estimating the mean in the bimodal density for various simulated tempering
configurations with and without adaptive proposals

mixture proposals tailored to each step on the temperature ladder, rather than being
optimized to create a given acceptance rate across all temperatures. Figure 12.2 also
displays the adaptive Wang–Landau algorithm in parallel with 10 and 100 particles,
demonstrating vastly improved convergence of the algorithm. With M particles, the
approximate improvement in RMSE is

√
M , which is roughly equivalent to if we

were to run a single chain for M ×N iterations. However, due to vectorization, the
parallel version does not take M times as long to run. In our examples, M = 10 and
M = 100 particles took 1.8 and 6.2 times longer than the single chain, respectively.

We also explored automatic setting of the temperature ladder using the bin-
splitting method proposed in [3] (not shown). However, in this small example,
the advanced binning method performed similarly to simply fixing the temperature
ladder to the integers 1, . . . , 10. We suspect that in more complicated settings
where the results are more sensitive to the temperature ladder the automatic binning
approach will bring additional benefit.

12.3 Conclusion

This brief note has employed a simple bimodal example to demonstrate the benefits
of embedding adaptive proposals, parallelization, and automatic bin splitting within
the simulated tempering framework. Due to space limitations, many pertinent
references and ideas have been excluded, though the interested reader might follow
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the citation trail to further explore these algorithms. If there is a single takeaway,
it is that sometimes “stacking” multiple computational techniques can lead to
significant improvements in performance. In this case, parallelization and adaptive
proposals provide significant improvements to simulated tempering with the Wang–
Landau algorithm; additionally, they are straightforward to implement through the
R package PAWL, available online.

Ongoing work involves applying these simulated tempering methods to learn
latent dimensions in nonstationary spatial models [2], which due to partial iden-
tifiability of the parameter space show particular promise for benefiting from the
ideas presented herein. Specifically, as this class of models is new and as yet
poorly understood, it is unclear a priori how to determine the scale of the proposal
distribution as well as set the temperature ladder.
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