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Abstract

The Gibbs sampler is one of the most popular algorithms for inference in statistical models.
In this paper, we introduce a herding variant of this algorithm, called herded Gibbs, that
is entirely deterministic. We prove that herded Gibbs has an O(1/T ) convergence rate for
models with independent variables and for fully connected probabilistic graphical models.
Herded Gibbs is shown to outperform Gibbs in the tasks of image denoising with MRFs
and named entity recognition with CRFs. However, the convergence for herded Gibbs for
sparsely connected probabilistic graphical models is still an open problem.
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1. Introduction

Over the last 60 years, we have witnessed great progress in the design of randomized sam-
pling algorithms; see for example Liu (2001); Doucet et al. (2001); Andrieu et al. (2003);
Robert and Casella (2004) and the references therein. In contrast, the design of determin-
istic algorithms for “sampling” from distributions is still in its inception (Chen et al., 2010;
Holroyd and Propp, 2010; Chen et al., 2011; Murray and Elliott, 2012). There are, however,
many important reasons for pursuing this line of attack on the problem. From a theoret-
ical perspective, this is a well defined mathematical challenge whose solution might have
important consequences. It also brings us closer to reconciling the fact that we typically
use pseudo-random number generators to run Monte Carlo algorithms on classical, Von
Neumann architecture, computers. Moreover, the theory for some of the recently proposed
deterministic sampling algorithms has taught us that they can achieve O(1/T ) convergence
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rates (Chen et al., 2010; Holroyd and Propp, 2010), which are much faster than the standard
Monte Carlo rates of O(1/

√
T ) for computing ergodic averages. From a practical perspec-

tive, the design of deterministic sampling algorithms creates an opportunity for researchers
to apply a great body of knowledge on optimization to the problem of sampling; see for
example Bach et al. (2012) for an early example of this.

The domain of application of currently existing deterministic sampling algorithms is
still very narrow. Importantly, the only available deterministic tool for sampling from
unnormalized multivariate probability distributions is the Markov Chain Quasi-Monte Carlo
method (Chen et al., 2011), but there is no theoretical result to show a better convergence
rate than a standard MCMC method yet. This is very limiting because the problem of
sampling from unnormalized distributions is at the heart of the field of Bayesian inference
and the probabilistic programming approach to artificial intelligence (Lunn et al., 2000;
Carbonetto et al., 2005; Milch and Russell, 2006; Goodman et al., 2008). At the same time,
despite great progress in Monte Carlo simulation, the celebrated Gibbs sampler continues to
be one of the most widely-used algorithms. For example, it is the inference engine behind
popular statistics packages (Lunn et al., 2000), several tools for text analysis (Porteous
et al., 2008), and Boltzmann machines (Ackley et al., 1985; Hinton and Salakhutdinov,
2006). The popularity of Gibbs stems from its generality and simplicity of implementation.

Without any doubt, it would be remarkable if we could design generic deterministic
Gibbs samplers with fast (theoretical and empirical) rates of convergence. In this paper,
we take steps toward achieving this goal by capitalizing on a recent idea for deterministic
simulation known as herding. Herding (Welling, 2009a,b; Gelfand et al., 2010) is a deter-
ministic procedure for generating samples x ∈ X ⊆ Rn, such that the empirical moments µ
of the data are matched. The herding procedure, at iteration t, is as follows:

x(t) = arg max
x∈X

〈w(t−1),φ(x)〉,

w(t) = w(t−1) + µ− φ(x(t)), (1)

where φ : X → H is a feature map (statistic) from X to a Hilbert spaceH with inner product
〈·, ·〉, w ∈ H is the vector of parameters, and µ ∈ H is the moment vector (expected value
of φ over the data) that we want to match. If we choose normalized features by making
‖φ(x)‖ constant for all x, then the update to generate samples x(t) for t = 1, 2, . . . , T in
Equation 1 is equivalent to minimizing the objective

J(x1, . . . ,xT ) =

∥∥∥∥∥µ− 1

T

T∑
t=1

φ(x(t))

∥∥∥∥∥
2

, (2)

where T may have no prior known value and ‖ · ‖ =
√
〈·, ·〉 is the naturally defined norm

based upon the inner product of the space H (Chen et al., 2010; Bach et al., 2012).
Herding can be used to produce samples from normalized probability distributions.

This is done as follows. Let µ denote a discrete, normalized probability distribution, with
µi ∈ [0, 1] and

∑n
i=1 µi = 1. A natural feature in this case is the vector φ(x) that has

all entries equal to zero, except for the entry at the position indicated by x. For instance,
if x = 2 and n = 5, we have φ(x) = (0, 1, 0, 0, 0)T . Hence, µ̂ = T−1

∑T
t=1φ(x(t)) is

an empirical estimate of the distribution. In this case, one step of the herding algorithm
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involves finding the largest component of the weight vector (i? = arg maxi∈{1,2,...,n}w
(t−1)
i ),

setting x(t) = i?, fixing the i?-entry of φ(x(t)) to one and all other entries to zero, and
updating the weight vector: w(t) = w(t−1) + (µ− φ(x(t))). The output is a set of samples
{x(1), . . . , x(T )} for which the empirical estimate µ̂ converges on the target distribution µ
as O(1/T ).

The herding method, as described thus far, only applies to normalized distributions
or to problems where the objective is not to guarantee that the samples come from the
right target, but to ensure that some moments are matched. An interpretation of herding
in terms of Bayesian quadrature has been put forward recently by Huszar and Duvenaud
(2012).

In this paper, we will show that it is possible to use herding to generate samples from
more complex unnormalized probability distributions. In particular, we introduce a de-
terministic variant of the popular Gibbs sampling algorithm, which we refer to as herded
Gibbs. While Gibbs relies on drawing samples from the full-conditionals at random, herded
Gibbs generates the samples by matching the full-conditionals. That is, one simply applies
herding to all the full-conditional distributions.

The experiments will demonstrate that the new algorithm outperforms Gibbs sampling
and mean field methods in the domain of sampling from sparsely connected probabilistic
graphical models, such as grid-lattice Markov random fields (MRFs) for image denoising
and conditional random fields (CRFs) for natural language processing.

We advance the theory by proving that the deterministic Gibbs algorithm converges for
distributions of independent variables and fully-connected probabilistic graphical models.
However, a proof establishing suitable conditions that ensure convergence of herded Gibbs
sampling for sparsely connected probabilistic graphical models is still unavailable.

2. Herded Gibbs Sampling

For a graph of discrete nodes G = (V,E), where the set of nodes are the random variables
V = {Xi}Ni=1, Xi ∈ X , let π denote the target distribution defined on G.

Gibbs sampling is one of the most popular methods to draw samples from π. Gibbs
alternates (either systematically or randomly) the sampling of each variable Xi given
XN (i) = xN (i), where i is the index of the node, and N (i) denotes the neighbors of node i.
That is, Gibbs generates each sample from its full-conditional distribution p(Xi|xN (i)).

Herded Gibbs replaces the sampling from full-conditionals with herding at the level
of the full-conditionals. That is, it alternates a process of matching the full-conditional
distributions p(Xi = xi|XN (i)). To do this, herded Gibbs defines a set of auxiliary weights
{wi,xN (i)

} for any value of Xi = xi and XN (i) = xN (i). For ease of presentation, we assume
the domain of Xi is binary, X = {0, 1}, and we use one weight for every i and assignment
to the neighbors xN (i). Herded Gibbs can be trivially generalized to the discrete setting by

employing weight vectors in R|X | instead of scalars.

If the binary variable Xi has four binary neighbors XN (i), we must maintain 24 = 16
weight vectors. Only the weight vector corresponding to the current instantiation of the
neighbors is updated, as illustrated in Algorithm 11. The memory complexity of herded

1. Code is available at http://www.mareija.ca/research/code/
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Algorithm 1 Herded Gibbs Sampling

Input: T .

Step 1: Set t = 0. Initialize X(0) in the support of π and w
(0)
i,xN (i)

in (π(Xi = 1|xN (i)) −
1, π(Xi = 1|xN (i))).
for t = 1→ T do

Step 2: Pick a node i according to some policy. Denote w = w
(t−1)
i,x

(t−1)
N (i)

.

Step 3: If w > 0, set x
(t)
i = 1, otherwise set x

(t)
i = 0.

Step 4: Update weight w
(t)

i,x
(t)
N (i)

= w
(t−1)
i,x

(t−1)
N (i)

+ π(Xi = 1|x(t−1)
N (i) )− x(t)i .

Step 5: Keep the values of all the other nodes x
(t)
j = x

(t−1)
j ,∀j 6= i and all the other

weights w
(t)
j,xN (j)

= w
(t−1)
j,xN (j)

,∀j 6= i or xN (j) 6= x
(t−1)
N (i) .

end for
Output: x(1), . . . ,x(T )

Gibbs is exponential in the maximum node degree. Note the algorithm is a deterministic
Markov process with state (X,W).

The initialization in the first step of Algorithm 1 guarantees that X(t) always remains
in the support of π with the reason to be explained in Section 3.1. For a deterministic scan
policy in step 2, we take the value of variables x(tN), t ∈ N as a sample sequence. Throughout
the paper all experiments employ a fixed variable traversal for sample generation. We call
one such traversal of the variables a sweep.

3. Analysis

As herded Gibbs sampling is a deterministic algorithm, the probability distribution of the
sample at any step t is a single point mass and there is no stationary distribution of states.
Instead, we examine the average of the sample states over time and hypothesize that it
converges to the joint distribution, our target distribution, π. To make the treatment
precise, we need the following definition:

Definition 1 For a graph of discrete nodes G = (V,E), where the set of nodes V = {Xi}Ni=1,

Xi ∈ X , P
(τ)
T is the empirical estimate of the joint distribution obtained by averaging over

T samples acquired from G. P
(τ)
T is derived from T samples, collected at the end of every

sweep over N variables, starting from the τ th sweep:

P
(τ)
T (X = x) =

1

T

τ+T−1∑
k=τ

I(X(kN) = x). (3)

The definition of P
(τ)
T is illustrated in Figure 1. Our goal is to prove that the limiting

average sample distribution over time converges to the target distribution π. Specifically,
we want to show the following:

lim
T→∞

P
(τ)
T (x) = π(x), ∀τ ≥ 0. (4)

4



Herded Gibbs Sampling

Figure 1: Sample distribution over T sweeps. Each node refers to the joint state at the end
of one sweep.

If this holds, we also want to know what the convergence rate is.

3.1 Single Variable Models

We begin the theoretical analysis with a graph of one binary variable. For this graph, there
is only one weight w and herded Gibbs is equivalent to the standard herding algorithm.
Denote π(X = 1) as π for notational simplicity. The sequence of X is determined by the
dynamics of w (shown in Figure 2a):

w(t) = w(t−1) + π − I(w(t−1) > 0), X(t) =

{
1 if w(t−1) > 0
0 otherwise

. (5)

The following lemma shows that (π − 1, π] is the invariant interval of the dynamics.

Lemma 1 If w is the weight of the herding dynamics of a single binary variable X with
probability P (X = 1) = π, and w(s) ∈ (π − 1, π] at some step s ≥ 0, then w(t) ∈ (π −
1, π], ∀t ≥ s. Moreover, for T ∈ N, we have:

s+T∑
t=s+1

I[X(t) = 1] ∈ [Tπ − 1, Tπ + 1], (6)

s+T∑
t=s+1

I[X(t) = 0] ∈ [T (1− π)− 1, T (1− π) + 1]. (7)

See the proof in Appendix A. It follows immediately that the state X = 1 is visited at a
frequency close to π with an error:

|P (τ)
T (X = 1)− π| ≤ 1

T
. (8)

This is known as the fast moment matching property in Welling (2009a,b); Gelfand et al.
(2010). When w is outside the invariant interval, it is easy to observe that w will move
into it monotonically at a linear speed in a transient period. So we will always consider an
initialization of w ∈ (π − 1, π] from now on.

Another immediate consequence of Lemma 1 is that the initialization in Algorithm 1
ensures that X(t) always remain in the support of π. That is because when we consider
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the set of iterations that involves a particular weight wi,xN (i)
, the dynamics of that weight

is equivalent to that of a single variable model with a probability π(Xi = 1|xN (i)). If a

joint state X is going to move outside the support at some iteration t, from e. g. x(t−1) =
(xi = 0,x−i) to x(t) = (xi = 1,x−i) where x−i denotes all the other variables but xi, then

the corresponding weight w
(t−1)
i,xN (i)

must be positive according to the algorithm. However,

the conditional probability π(Xi = 1|xN (i)) = 0 because π(x(t−1)) > 0 and π(x(t)) = 0.

Following Lemma 1 the weight w
(t−1)
i,xN (i)

∈ (−1, 0], leading to a contradiction. The same

argument applies when X tries to move from x(t−1) = (xi = 1,x−i) to x(t) = (xi = 0,x−i).
Therefore, once initialized inside the support, the samples of Algorithm 1 will remain in the
support for any t > 0.

It will be useful for the next section to introduce an equivalent representation of the
weight dynamics by taking a one-to-one mapping w ← w mod 1 (we define 1 mod 1 = 1)
with a little abuse of the symbol w. We think of the new variable w as updated by a
constant translation vector in a circular unit interval (0, 1] as shown in Figure 2b. That is,

w(t) = (w(t−1) + π) mod 1, X(t) =

{
1 if w(t−1) < π
0 otherwise

. (9)

(a) Representation in Equation 5.

(b) Equivalent representation.

Figure 2: Herding dynamics for a single
variable. Black arrows show the
trajectory of w(t) for 2 iterations.

Figure 3: Herding dynamics for two inde-
pendent variables in the equiva-
lent representation.

3.2 Empty Graphs

The analysis of herded Gibbs for empty graphs is a natural extension of that for single
variables. In an empty graph, all the variables are independent of each other and herded
Gibbs reduces to runningN one-variable chains in parallel. Denote the marginal distribution
πi := π(Xi = 1).

Examples of failing convergence in the presence of rational ratios between the πis were
observed in Bach et al. (2012). There the need for further theoretical research on this matter
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was pointed out. The following theorem provides a sufficient condition for convergence in
the restricted domain of empty graphs.

Theorem 2 For an empty graph, when herded Gibbs has a fixed scanning order, and

{1, π1, . . . , πN} are rationally independent, the empirical distribution P
(τ)
T converges to the

target distribution π as T →∞ for any τ ≥ 0.

A set of n real numbers, x1, x2, . . . , xn, is said to be rationally independent if for any set of
rational numbers, a1, a2, . . . , an, we have

∑n
i=1 aixi = 0⇔ ai = 0, ∀1 ≤ i ≤ n.

Proof For an empty graph of N independent vertices, the dynamics of the weight vector
w after one sweep over all variables are equivalent to a constant translation mapping in an
N -dimensional circular unit space (0, 1]N , as shown in Figure 3:

w(t) = (w(t−1) + π) mod 1

= (w(0) + tπ) mod 1, x
(t)
i =

{
1 if w

(t−1)
i < πi

0 otherwise
, ∀1 ≤ i ≤ N. (10)

The Kronecker-Weyl theorem (Weyl, 1916) states that the sequence w̃(t) = tπ mod 1, t ∈
Z+ is equidistributed (or uniformly distributed) on (0, 1]N if and only if (1, π1, . . . , πN )
is rationally independent. Intuitively, when (1, π1, . . . , πN ) is rationally independent, the
trajectory of w̃(t) can not form a closed loop in the circular unit space and will thereby
cover the entire space uniformly.

Since we can define a one-to-one volume preserving transformation between w̃(t) and w(t)

as (w̃(t) + w(0)) mod 1 = w(t), the sequence of weights {w(t)} is also uniformly distributed
in (0, 1]N .

Now define the mapping from a state value xi to an interval of wi as

Ai(x) =

{
(0, πi] if x = 1
(πi, 1] if x = 0

(11)

and let |Ai| be its measure. We obtain the limiting distribution of the joint state as

lim
T→∞

P
(τ)
T (X = x) = lim

T→∞

1

T

T∑
t=1

I

[
w(t−1) ∈

N∏
i=1

Ai(xi)

]

=
N∏
i=1

|Ai(xi)| =
N∏
i=1

π(Xi = xi) = π(X = x). (12)

The rational independence condition in the application of the Kronecker-Weyl theorem
ensures that the probabilistic independence between different variables will be respected by
the herding dynamics. When the condition fails, the convergence of joint distribution is not
guaranteed but the marginal distribution of each variables will still converge to their target
distribution because the N one-variable chains run independently from each other.
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3.3 Fully-Connected Graphs

When herded Gibbs is applied to fully-connected (complete) graphs, convergence is guar-
anteed even with rationally dependent conditional probabilities. In fact, herded Gibbs
converges to the target joint distribution at a rate of O(1/T ) with a O(log(T )) burn-in
period. This statement is formalized in Theorem 3 and a corollary when we ignore the
burn-in period, with proofs provided respectively in Appendix B.4 and B.5.

Theorem 3 For a fully-connected graph, when herded Gibbs has a fixed scanning order
and a Dobrushin coefficient of the corresponding Gibbs sampler η < 1, there exist constants
l > 0, and B > 0 such that

dv(P
(τ)
T − π) ≤ λ

T
, ∀T ≥ T ∗, τ > τ∗(T ), (13)

where λ = 2N(1+η)
l(1−η) , T ∗ = 2B

l , τ∗(T ) = log 2
1+η

(
(1−η)lT

4N

)
, and dv(δπ) := 1

2 ||δπ||1.

Corollary 4 When the conditions of Theorem 3 hold, and we start collecting samples at
the end of every sweep from the beginning, that is setting τ = 0, the error of the sample
distribution is bounded by:

dv(P
(τ=0)
T − π) ≤ λ+ τ∗(T )

T
= O(

log(T )

T
), ∀T ≥ T ∗ + τ∗(T ∗). (14)

The Dobrushin ergodic coefficient (Brémaud, 1999) measures the geometric convergence
rate of a Markov chain. The constant l in the convergence rate can be interpreted as a lower
bound of the transition probability between any pair of states in the support of the target
distribution. For a strictly positive distribution, the constants l and B are

l = πNmin, B = πNmin +
1− (2πmin)N

1− 2πmin
. (15)

where πmin is the minimal conditional probability πmin = min1≤i≤N,x−i π(xi|x−i). We refer
the readers to Equation 34 in Proposition 5 in the appendix for a general distribution. Notice
that l has an exponential term, with N in the exponent, leading to an exponentially large
constant. This is unavoidable for any sampling algorithm when considering the convergence
to a joint distribution with 2N states. As for the marginal distributions, it is obvious that
the convergence rate of herded Gibbs is also O(1/T ) because marginal probabilities are
linear functions of the joint distribution. In fact, we observe very rapid convergence results
for the marginals in practice, so stronger theoretical results about the convergence of the
marginal distributions seem plausible.

The proof proceeds by first bounding the discrepancy between the chain of empirical

estimates of the joint obtained by averaging over T herded Gibbs samples, {P (s)
T }, s ≥ τ ,

and a Gibbs chain initialized at P
(τ)
T . After one sweep over N variables, this discrepancy is

bounded above by 2N/lT .

The Gibbs chain has geometric convergence to π and the distance between the Gibbs

and herded Gibbs chains decreases as O(1/T ). When the distance between P
(τ)
T and π is
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sufficiently large, the geometric convergence rate to π dominates the discrepancy of herded

Gibbs and thus we infer that P
(τ)
T converges to a neighborhood of π geometrically in time

τ for a fixed T . To round-off the proof, we must find a limiting value for τ . The proof
concludes with an O(log(T )) burn-in for τ .

When there exist conditional independencies in a distribution, we can still apply herded
Gibbs with a fully connected graph and treat all the other variables as the Markov blanket
of the variable to be sampled. Theorem 3 and its corollary still apply. Alternatively, we
can apply herded Gibbs on a more compact representation with an incomplete graph. It
requires less memory to run herded Gibbs because the number of weights depends expo-
nentially on the neighborhood size. However, for a generic graph we have no mathematical
guarantees for the convergence rate of herded Gibbs. In fact, one can easily construct syn-
thetic examples for which herded Gibbs does not seem to converge to the true marginals
and joint distribution. For the examples covered by our theorems and for examples with
real data, herded Gibbs demonstrates good behaviour. The exact conditions under which
herded Gibbs converges for sparsely connected graphs are still unknown.

4. Experiments

We illustrate the performance of herded Gibbs with two synthetic examples and two real
experiments for image denoising and natural language processing respectively.

4.1 Simple Complete Graph

We begin with an illustration of how herded Gibbs substantially outperforms Gibbs and
a deterministic Gibbs sampler based on MCQMC on a simple complete graph. The MC-
QMC algorithm replaces the random number generator of the regular Gibbs sampler with
a completely uniformly distributed (CUD) sequence (Chen et al., 2011). We consider a
fully-connected model of two variables, X1 and X2, as shown in Figure 4; the joint distri-
bution of these variables is shown in Table 1. We run each sampler for 2.6× 105 iterations.
We use a small linear feedback shift registers (LFSR) described in (Chen et al., 2012) to
generate the CUD sequence and choose the size of the LFSR so that the entire period of
the sequence will be used for one run of the Markov chain. Both Gibbs and MCQMC-based
Gibbs are run 100 times with different random seeds to assess their average performance.
Herded Gibbs is run only once because different initialization does not show noticeable dif-
ference in its performance. Figure 5 shows the marginal distribution P (X1 = 1) and the
joint distribution approximated by all the algorithms for different ε. As ε decreases, all
the approaches require more iterations to converge, but herded Gibbs clearly outperforms
the other two algorithms. Figure 5c also shows that herding does indeed exhibit a linear
convergence rate. MCQMC-based Gibbs does not show any improvement on the error of
the sample distribution compared to the standard Gibbs.

4.2 Simple Incomplete Graph

We also illustrate a simple counterexample where the sample distribution of herded Gibbs
does not converge to the target distribution when the graph is incomplete. Figure 7 shows
a four-variable graphical model with two missing edges, X1 − X4, X2 − X3. The unary

9
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X1 X2

Figure 4: Two-variable model.

X1 = 0 X1 = 1 P(X2)

X2 = 0 1/4− ε ε 1/4
X2 = 1 ε 3/4− ε 3/4

P(X1) 1/4 3/4 1

Table 1: Joint distribution of the two-variable model.

and pairwise energies of existing edges are random sampled from a standard Gaussian
distributionN (0, 1). We apply herded Gibbs for 108 iterations and compare the joint sample
distribution with the true distribution. While the discrepancy is marginal as depicted in
Figure 6b, the L1 error plot in 6b does not show a tendency to converging to zero.

4.3 MRF for Image Denoising

Next, we consider the standard setting of a grid-lattice MRF for image denoising. Let us
assume that we have a binary image corrupted by noise, and that we want to infer the
original clean image. Let Xi ∈ {−1,+1} denote the unknown true value of pixel i, and
yi the observed, noise-corrupted value of this pixel. We take advantage of the fact that
neighboring pixels are likely to have the same label by defining an MRF with an Ising prior.
That is, we specify a rectangular 2D lattice with the following pair-wise clique potentials:

ψij(xi, xj) =

(
eJij e−Jij

e−Jij eJij

)
(16)

and joint distribution:

p(x|J) =
1

Z(J)

∏
i∼j

ψij(xi, xj) =
1

Z(J)
exp

1

2

∑
i∼j

Jijxixj

 , (17)

where i ∼ j is used to indicate that nodes i and j are connected. The known parameters Jij
establish the coupling strength between nodes i and j. Note that the matrix J is symmetric.
If all the Jij > 0, then neighboring pixels are likely to be in the same state.

The MRF model combines the Ising prior with a likelihood model as follows:

p(x,y) = p(x)p(y|x) =

 1

Z

∏
i∼j

ψij(xi, xj)

 .[∏
i

p(yi|xi)

]
. (18)

The potentials ψij encourage label smoothness. The likelihood terms p(yi|xi) are condi-
tionally independent (e.g. Gaussians with known variance σ2 and mean µ centered at each
value of xi, denoted µxi). In more precise terms,

p(x,y|J,µ, σ) =
1

Z(J,µ, σ)
exp

1

2

∑
i∼j

Jijxixj −
1

2σ2

∑
i

(yi − µxi)2
 . (19)

When the coupling parameters Jij are identical, say Jij = J , we have
∑

ij Jijf(xi, xj) =
J
∑

ij f(xi, xj). Hence, different neighbor configurations result in the same value of J
∑

ij f(xi, xj).
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(a) Approximate marginals.

(b) Log-log plot of the L1 error of the joint distribution.

(c) Inverse of the L1 error of the joint distribution.

Figure 5: Approximating a marginal (a) and joint (b, c) distribution with Gibbs (blue),
MCQMC-based Gibbs (green) and herded Gibbs (red) for an MRF of two vari-
ables, constructed so as to make the move from state (0, 0) to (1, 1) progressively
more difficult as ε decreases. The four columns, from left to right, are for ε = 0.1,
ε = 0.01, ε = 0.001 and ε = 0.0001. Table 1 provides the joint distribution
for these variables. The shaded areas for Gibbs and MCQMC-based Gibbs cor-
respond to 25%-75% quantile of 100 runs. Rows (b) and (c) illustrate that the
empirical convergence rate of herded Gibbs matches the expected theoretical rate.
As the error of herded Gibbs in (b) and (c) frequently drops to extremely small
values for some iterations and jumps back, we plot the upper-bound (envelope)
of the error for herded Gibbs defined as ẽt = maxτ≥t eτ to remove the oscillating
behavior for a better visualization.
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Figure 7: Four-variable model represented as an incomplete graph. (a): Graphical Model.
(b): Joint distribution of samples from herded Gibbs vs. the ground truth. (c):
Log-log plot of the L1 error of the joint sample distribution.

If we store the conditionals for configurations with the same sum together, we only need to
store as many conditionals as different possible values that the sum could take. This enables
us to develop a shared version of herded Gibbs that is more memory efficient where we only
maintain and update weights for distinct states of the Markov blanket of each variable. The
shared version of herded Gibbs also exhibits a different dynamics as the standard version
as shown in the following result, and the convergence property of this algorithm remains an
open problem.

In this exemplary image denoising experiment, noisy versions of the binary image, de-
picted in Figure 8 (left), were created through the addition of Gaussian noise, with varying
σ. Figure 8 (right) shows a corrupted image with σ = 4. The L2 reconstruction errors
as a function of the number of iterations, for this example, are shown in Figure 9. The
plot compares the herded Gibbs method against Gibbs and two versions of mean field with
different damping factors (Murphy, 2012). The results demonstrate that the herded Gibbs
techniques are among the best methods for solving this task.

A comparison for different values σ is presented in Table 2. As expected mean field does
well in the low-noise scenario, but the performance of the shared version of herded Gibbs
as the noise increases is significantly better.

4.4 CRF for Named Entity Recognition

Named entity recognition (NER) involves the identification of entities, such as people and
locations, within a text sample. A conditional random field (CRF) for NER models the
relationship between entity labels and sentences with a conditional probability distribution:
P (X|Y, θ), where X is a labeling, Y is a sentence, and θ is a vector of coupling parameters.
The parameters, θ, are feature weights and model relationships between variables Xi and
Yj or Xi and Xj . A chain CRF only employs relationships between adjacent variables,
whereas a skip-chain CRF can employ relationships between variables where subscripts i
and j differ dramatically. Skip-chain CRFs are important in language tasks, such as NER

12
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Figure 8: Original image (left) and its corrupted version (right), with noise parameter σ = 4.

Figure 9: Reconstruction errors for the image denoising task. The results are averaged
across 10 corrupted images with Gaussian noise N (0, 16). The error bars cor-
respond to one standard deviation. Mean field requires the specification of the
damping factor D.

and semantic role labeling, because they allow us to model long dependencies in a stream
of words, see Figure 10.

Once the parameters have been learned, the CRF can be used for inference; a labeling for
some sentence Y is found by maximizing the above probability. Inference for CRF models
in the NER domain is typically carried out with the Viterbi algorithm. However, if we want
to accommodate long term dependencies, thus resulting in the so called skip-chain CRFs,

13
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PPPPPPPPMethod
σ

2 4 6 8

Herded Gibbs 21.58(0.26) 32.07(0.98) 47.52(1.64) 67.93(2.78)
Herded Gibbs - shared 22.24(0.29) 31.40(0.59) 42.62(1.98) 58.49(2.86)
Gibbs 21.63(0.28) 37.20(1.23) 63.78(2.41) 90.27(3.48)
Mean field (D=0.5) 15.52(0.30) 41.76(0.71) 76.24(1.65) 104.08(1.93)
Mean field (D=1) 17.67(0.40) 32.04(0.76) 51.19(1.44) 74.74(2.21)

Table 2: Errors of image denoising example after 30 iterations (all measurements have been
scaled by ×10−3). We use an Ising prior with Jij = 1 and four Gaussian noise
models with different σ’s. For each σ, we generated 10 corrupted images by adding
Gaussian noise. The final results shown here are averages and standard deviations
(in parentheses) across the 10 corrupted images. D denotes the damping factor in
mean field.
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Figure 10: Typical skip-chain CRF model for named entity recognition.

Viterbi becomes prohibitively expensive. To surmount this problem, the Stanford named
entity recognizer (J. R. Finkel and Manning, 2005) makes use of annealed Gibbs sampling.

To demonstrate herded Gibbs on a practical application of great interest in text mining,
we modify the standard inference procedure of the Stanford named entity recognizer by
replacing the annealed Gibbs sampler with the herded Gibbs sampler. The herded Gibbs
sampler is not annealed. Notice that the label of a word Xi is a discrete variable with
possibly multiple values. As discussed in Section 2 we generalize herded Gibbs for binary
variables to discrete variables by assigning a different weight wi,xN (i)

for each value of Xi.
To find the maximum a posteriori sequence X, we compute the joint discrete probability of
every sample and choose the one with the highest probability as the prediction. The faster a
sampler mixes in the state space, the more likely that a sample with high probability will be
generated given a the same amount of time. In order to be able to compare against Viterbi,
we have purposely chosen to use single-chain CRFs. We remind the reader, however, that
the herded Gibbs algorithm could be used in cases where Viterbi inference is not possible.

We used the pre-trained 3-class CRF model in the Stanford NER package (J. R. Finkel
and Manning, 2005). This model is a linear chain CRF with pre-defined features and pre-
trained feature weights, θ. For the test set, we used the corpus for the NIST 1999 IE-ER

Evaluation. Performance is measured in per-entity F1

(
F1 = 2 · precision·recall

precision+recall

)
. For all the

14
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“Pumpkin” (Tim Roth) and “Honey Bunny” (Amanda Plummer) are having breakfast in a

diner. They decide to rob it after realizing they could make money off the customers as well as

the business, as they did during their previous heist. Moments after they initiate the hold-up,

the scene breaks off and the title credits roll. As Jules Winnfield (Samuel L. Jackson) drives,

Vincent Vega (John Travolta) talks about his experiences in Europe, from where he has just

returned: the hash bars in Amsterdam, the French McDonald’s and its “Royale with Cheese”.

Figure 11: Results for the application of the NER CRF to a random Wikipedia sam-
ple (Wik, 2013). Entities are automatically classified as person (red italic),
location (green boldfaced) and organization (orange underlined).

methods, except Viterbi, we show F1 scores after 100, 400 and 800 iterations in Table 3.
For Gibbs, the results shown are the averages and standard deviations over 5 random runs.
We used a linear annealing schedule for Gibbs. As the results illustrate, herded Gibbs
attains the same accuracy as Viterbi and it is faster than annealed Gibbs. Unlike Viterbi,
herded Gibbs can be easily applied to skip-chain CRFs. After only 400 iterations (90.5
seconds), herded Gibbs already achieves an F1 score of 84.75, while Gibbs, even after 800
iterations (115.9 seconds) only achieves an F1 score of 84.61. The experiment thus clearly
demonstrates that (i) herded Gibbs does no worse than the optimal solution, Viterbi, and
(ii) herded Gibbs yields more accurate results for the same amount of computation than
Gibbs sampling. Figure 11 provides a representative NER example of the performance of
Gibbs, herded Gibbs and Viterbi (all methods produced the same annotation for this short
example).

````````````Method
Iterations

100 400 800

Annealed Gibbs 84.36(0.16) [55.73s] 84.51(0.10) [83.49s] 84.61(0.05) [115.92s]
Herded Gibbs 84.70 [59.08s] 84.75 [90.48s] 84.81 [132.00s]
Viterbi 84.81[46.74s]

Table 3: F1 scores for Gibbs, herded Gibbs and Viterbi on the NER task. The average
computational time each approach took to do inference for the entire test set is
listed (in square brackets). After only 400 iterations (90.48 seconds), herded Gibbs
already achieves an F1 score of 84.75, while Gibbs, even after 800 iterations (115.92
seconds) only achieves an F1 score of 84.61. For the same computation, herded
Gibbs is more accurate than Gibbs.
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5. Conclusions and Future Work

In this paper, we introduced herded Gibbs, a deterministic variant of the popular Gibbs
sampling algorithm. While Gibbs relies on drawing samples from the full-conditionals at
random, herded Gibbs generates the samples by matching the full-conditionals. Impor-
tantly, the herded Gibbs algorithm is very close to the Gibbs algorithm and hence retains
its simplicity of implementation.

The synthetic, denoising and named entity recognition experiments provided evidence
that herded Gibbs outperforms Gibbs sampling. However, as discussed, herded Gibbs re-
quires storage of the conditional distributions for all instantiations of the neighbors in the
worst case. This storage requirement indicates that it is more suitable for sparse probabilis-
tic graphical models, such as the CRFs used in information extraction. At the other extreme,
the paper advanced the theory of deterministic sampling by showing that herded Gibbs con-
verges with rate O(1/T ) for models with independent variables and fully-connected models.
Thus, there is gap between theory and practice that needs to be narrowed. We do not
anticipate that this will be an easy task, but it is certainly a key direction for future work.

We should mention that it is also possible to design parallel versions of herded Gibbs in
an asynchronous Jacobi fashion. Preliminary study shows that these are less efficient than
the synchronous Gauss-Seidel version of herded Gibbs discussed in this paper. However,
if many cores are available, we strongly recommend the parallel implementation as it will
likely outperform the current sequential implementation.

The design of efficient herding algorithms for densely connected probabilistic graphical
models remains an important area for future research. Such algorithms, in conjunction with
Rao Blackwellization, would enable us to attack many statistical inference tasks, including
Bayesian variable selection and Dirichlet processes.

There are also interesting connections with other algorithms to explore. First, herding
has ties to multicanonical sampling algorithms (Bornn et al., 2013), which while not de-
terministic, employ similar biasing/reweighting schemes. Second, if for a fully connected
graphical model we build a new graph where every state is a node and directed connections
exist between nodes that can be reached with a single herded Gibbs update, then herded
Gibbs is very similar to the Rotor-Router model of Holroyd and Propp (2010)2. This deter-
ministic analogue of a random walk has provably superior concentration rates for quantities
such as normalized hitting frequencies, hitting times and occupation frequencies. In line
with our own convergence results, it is shown that discrepancies in these quantities decrease
as O(1/T ) instead of the usual O(1/

√
T ). We expect that many of the results from this

literature apply to herded Gibbs as well. The connection with the work of Art Owen and
colleagues, see for example Chen et al. (2011), also needs to be explored further. Their
work uses completely uniformly distributed (CUD) sequences to drive Markov chain Monte
Carlo schemes. It is not clear, following discussions with Art Owen, that CUD sequences
can be constructed in a greedy way as in herding.

2. We thank Art Owen for pointing out this connection.
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Appendix A. Proof of Lemma 1

Proof We first show that w ∈ (π − 1, π], ∀t ≥ s. This is easy to observe by induction as
w(s) ∈ (π− 1, π] and if w(t) ∈ (π− 1, π] for some t ≥ s, then, following Equation 5, we have:

w(t+1) =

{
w(t) + π − 1 ∈ (π − 1, 2π − 1] ⊆ (π − 1, π], if w(t) > 0,

w(t) + π ∈ (2π − 1, π] ⊆ (π − 1, π], otherwise.
(20)

Summing up both sides of Equation 5 over t immediately gives us the result of Equation 6
since:

Tπ −
s+T∑
t=s+1

I[X(t) = 1] = w(s+T ) − w(s) ∈ [−1, 1]. (21)

In addition, Equation 7 follows by observing that I[X(t) = 0] = 1− I[X(t) = 1].

Appendix B. Proof of Theorem 3

In this appendix, we give an upper bound for the convergence rate of the sampling distribu-
tion in fully connected graphs. As herded Gibbs sampling is deterministic, the distribution
of a variable’s state at every iteration degenerates to a single state. As such, we study here
the empirical distribution of a collection of samples.

The structure of the proof is as follows (with notation defined in the next subsection):
We study the distribution distance between the invariant distribution π and the empirical

distribution of T samples collected starting from sweep τ , P
(τ)
T . We show that the distance

decreases as τ ⇒ τ + 1 with the help of an auxiliary regular Gibbs sampling Markov

chain initialized at π(0) = P
(τ)
T , as shown in Figure 12. On the one hand, the distance

between the regular Gibbs chain after one iteration, π(1), and π decreases according to
the geometric convergence property of MCMC algorithms on compact state spaces. On

the other hand, we show that in one step the distance between P
(τ+1)
T and π(1) increases

by at most O(1/T ). Since the O(1/T ) distance term dominates the exponentially small

distance term, the distance between P
(τ+1)
T and π is bounded by O(1/T ). Moreover, after

a short burn-in period, L = O(log(T )), the empirical distribution P
(τ+L)
T will have an

approximation error in the order of O(1/T ).

B.1 Notation

Assume without loss of generality that in the systematic scanning policy, the variables are
sampled in the order 1, 2, · · · , N .
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Figure 12: Transition kernels and relevant distances for the proof of Theorem 3.

B.1.1 State Distribution

• Denote by X+ the support of the distribution π, that is, the set of states with positive
probability.

• We use τ to denote the time in terms of sweeps over all of the N variables, and t
to denote the time in terms of steps where one step constitutes the updating of one
variable. For example, at the end of τ sweeps, we have t = τN .

• Recall the sample/empirical distribution, P
(τ)
T , presented in Definition 1.

• Denote the sample/empirical distribution at the ith step within a sweep as P
(τ)
T,i , τ ≥

0, T > 0, 0 ≤ i ≤ N , as shown in Figure 13:

P
(τ)
T,i (X = x) =

1

T

τ+T−1∑
k=τ

I(X(kN+i) = x).

This is the distribution of T samples collected at the ith step of every sweep, starting

from the τ th sweep. Clearly, P
(τ)
T = P

(τ)
T,0 = P

(τ−1)
T,N .

Figure 13: Distribution over time within a sweep.
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• Denote the distribution of a regular Gibbs sampling Markov chain after L sweeps of
updates over the N variables with π(L), L ≥ 0.

For a given time τ , we construct a Gibbs Markov chain with initial distribution π0 =

P
(τ)
T and the same scanning order of herded Gibbs, as shown in Figure 12.

B.1.2 Transition Kernel

• Denote the transition kernel of regular Gibbs for the step of updating a variable Xi

with Ti, and for a whole sweep with T .

By definition, π0T = π1. The transition kernel for a single step can be represented as
a 2N × 2N matrix:

Ti(x,y) =

{
0, if x−i 6= y−i

π(Xi = yi|x−i), otherwise
, 1 ≤ i ≤ N,x,y ∈ {0, 1}N , (22)

where x is the current state vector of N variables, y is the state of the next step,
and x−i denotes all the components of x excluding the ith component. If π(x−i) = 0,
the conditional probability is undefined and we set it with an arbitrary distribution.
Consequently, T can also be represented as:

T = T1T2 · · · TN .

• Denote the Dobrushin ergodic coefficient (Brémaud, 1999) of the regular Gibbs kernel
with η ∈ [0, 1]. When η < 1, the regular Gibbs sampler has a geometric rate of
convergence of

dv(π
(1) − π) = dv(T π(0) − π) ≤ ηdv(π(0) − π), ∀π(0). (23)

A common sufficient condition for η < 1 is that π(X) is strictly positive.

• Consider the sequence of sample distributions P
(τ)
T , τ = 0, 1, · · · in Figures 1 and 13.

We define the transition kernel of herded Gibbs for the step of updating variable Xi

from P
(τ)
T,i−1 to P

(τ)
T,i with T̃ (τ)

T,i , and for a whole sweep from P
(τ)
T to P

(τ+1)
T with T̃ (τ)

T .

Unlike regular Gibbs, the transition kernel is not homogeneous. It depends on both
the time τ and the sample size T . Nevertheless, we can still represent the single step
transition kernel as a matrix:

T̃ (τ)
T,i (x,y) =

{
0, if x−i 6= y−i

P
(τ)
T,i (Xi = yi|x−i), if x−i = y−i

, 1 ≤ i ≤ N,x,y ∈ {0, 1}N , (24)

where P
(τ)
T,i (Xi = yi|x−i) is defined as:

P
(τ)
T,i (Xi = yi|x−i) =

Nnum

Nden
,

Nnum = TP
(τ)
T,i (X−i = x−i, Xi = yi) =

τ+T−1∑
k=τ

I(X(kN+i)
−i = x−i, X

(kN+i)
i = yi),

Nden = TP
(τ)
T,i−1(X−i = x−i) =

τ+T−1∑
k=τ

I(X(kN+i−1)
−i = x−i), (25)
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where Nnum is the number of occurrences of a joint state, and Nden is the number
of occurrences of a conditioning state in the previous step. When π(x−i) = 0, we
know that Nden = 0 with a proper initialization of herded Gibbs, and we simply set

T̃ (τ)
T,i = Ti for these entries. It is not hard to verify the following identity by expanding

every term with its definition

P
(τ)
T,i = P

(τ)
T,i−1T̃

(τ)
T,i ,

and consequently,

P
(τ+1)
T = P

(τ)
T T̃

(τ)
T ,

with

T̃ (τ)
T = T̃ (τ)

T,1 T̃
(τ)
T,2 · · · T̃

(τ)
T,N .

B.2 Linear Visiting Rate

We prove in this section that every joint state in the support of the target distribution is
visited, at least, at a linear rate. This result will be used to measure the distance between
the Gibbs and herded Gibbs transition kernels.

Proposition 5 If a graph is fully connected, herded Gibbs sampling scans variables in a
fixed order, and the corresponding Gibbs sampling Markov chain is irreducible, then for
any state x ∈ X+ and any index i ∈ [1, N ], the state is visited at least at a linear rate.
Specifically,

∃l > 0, B > 0, s.t.,∀i ∈ [1, N ],x ∈ X+, T ∈ N, s ∈ N,
s+T−1∑
k=s

I
[
X(t=Nk+i) = x

]
≥ lT −B. (26)

Denote the minimum nonzero conditional probability as

πmin = min
1≤i≤N,π(xi|x−i)>0

π(xi|x−i).

The following lemma, which is needed to prove Proposition 5, gives an inequality between
the number of visits of two sets of states in consecutive steps. Please refer to Figure 14 for
an illustration of the two sets of states and the mapping defined in the lemma.

Lemma 6 Given any integer i ∈ [1, N ], a set of states X ⊆ X+, and a mapping F : X→ X+

that corresponds to any possible state transition for a Gibbs step at variable Xi, that is, F
is any mapping satisfying

F(x)−i = x−i and π(F(x)i|x) > 0,∀x ∈ X, (27)

let Y = ∪x∈XF (x). We have that, if the graph is fully connected, for any s ≥ 0 and
T > 0, the number of times any state in Y is visited in the set of all i’th step in sweeps
s, s + 1, . . . , s + T − 1, denoted as Ci = {t = kN + i : s ≤ k ≤ s + T − 1}, is lower
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Figure 14: Example of the mapping
defined in Lemma 6 with
i = 3.

Figure 15: Example of the set of all paths from
x ∈ X+ to y = (1, 1, 0). Variables are
updated in the order of i = 1, 2, 3. In
this example, all the conditional dis-
tributions are positive and y can be
reached from any state in N = 3 steps.
Therefore, t∗ = 3.

bounded by a function of the number of times any state in X is visited in the previous steps
Ci−1 = {t = kN + i− 1 : s ≤ k ≤ s+ T − 1} as:∑

t∈Ci

I
[
X(t) ∈ Y

]
≥ πmin

∑
t∈Ci−1

I
[
X(t) ∈ X

]
− |Y|. (28)

Proof As a complement to Condition 27, we can define F−1 as the inverse mapping
from Y to subsets of X so that for any y ∈ Y, x ∈ F−1(y), we have x−i = y−i, and
∪y∈YF−1(y) = X. It’s easy to observe that

I
[
X

(t)
−i = y−i

]
≥ I

[
X(t) ∈ F−1(y)

]
,∀t,y ∈ Y. (29)

At every step of the herded Gibbs algorithm, only one weight is updated. Consider
the sequence of steps when a weight wi,xN(i)

is updated, we denote the segment of that
sequence in sweeps [s, s+ T − 1] as Ci(xN(i)). By definition of the herded Gibbs algorithm,

Ci(xN(i)) = {t : t ∈ Ci,X(t−1)
N(i) = xN(i)} = {t : t ∈ Ci,X(t)

N(i) = xN(i)} ⊆ Ci.

Because the graph is fully connected, N(i) = −i, the full conditional state X
(t)
−i with

t ∈ Ci(xN(i)) is uniquely determined. Since the value X
(t)
i is determined by wi,x−i for any

t ∈ Ci(x−i), we can apply Lemma 1 and get that for any y ∈ Y,∑
t∈Ci

I
[
X(t) = y

]
=

∑
t∈Ci(y−i)

I
[
X

(t)
i = yi

]
≥ π(yi|y−i)|Ci(y−i)| − 1 ≥ πmin|Ci(y−i)| − 1.

(30)
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Since the variables X−i are not changed at steps in Ci, combining with Equation 29 we can
show

|Ci(y−i)| =
∑
t∈Ci

I
[
X

(t)
−i = y−i

]
=

∑
t∈Ci−1

I
[
X

(t)
−i = y−i

]
≥

∑
t∈Ci−1

I
[
X(t) ∈ F−1(y)

]
. (31)

Combining the fact that ∪y∈YF−1(y) = X and summing up both sides of Equation 30 over
Y proves the lemma:

∑
t∈Ci

I
[
X(t) ∈ Y

]
≥
∑
y∈Y

πmin

∑
t∈Ci−1

I
[
X(t) ∈ F−1(y)

]
− 1

 ≥ πmin

∑
t∈Ci−1

I
[
X(t) ∈ X

]
−|Y|.

(32)

Remark 7 A fully connected graph is a necessary condition for the application of Lemma 1
in Equation 30. If a graph is not fully connected (N(i) 6= −i), a weight wi,xN(i)

is associated
with a partial conditional state and may be shared by multiple full conditional states. In that

case Ci(xN(i)) = {t : t ∈ Ci,X
(t)
N(i) = xN(i)}, and we can no longer use Lemma 1 to get

a lower bound for the number of visits to a particular joint state, not to mention a linear
visiting rate in Proposition 5.

Now let us prove Proposition 5 by iteratively applying Lemma 6.

Proof [Proof of Proposition 5] Because the corresponding Gibbs sampler is irreducible and
any Gibbs sampler is aperiodic, there exists a constant t∗ > 0 such that for any state y ∈ X+,
and any step i in a sweep, we can find a path of length t∗ from any state x ∈ X+ with a
positive transition probability, Path(x) = (x = x(0),x(1), . . . ,x(t∗) = y), where each step
of the path follows the Gibbs updating scheme. For a strictly positive distribution, the
minimum value of t∗ is N . We show an example of the paths in a graph with 3 variables
and a strictly positive distribution in Figure 15.

Denote τ∗ = dt∗/Ne and the jth element of the path Path(x) as Path(x, j). We can
define t∗ + 1 subsets Sj ⊆ X+, 0 ≤ j ≤ t∗ as the union of all the jth states in the path from
any state in X+:

Sj = ∪x∈X+Path(x, j).

By definition of these paths, we know S0 = X+ and St∗ = {y}, and there exits an integer
i(j) and a mapping Fj : Sj−1 → Sj ,∀j that satisfy the condition in Lemma 6 (i(j) is the
index of the variable to be updated, and the mapping is defined by the transition paths).
Also notice that any state in Sj can be different from y by at most min{N, t∗−j} variables,
and therefore |Sj | ≤ 2min{N,t∗−j}.
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Let us apply Lemma 6 recursively from j = t∗ to 1 as

s+T−1∑
k=s

I
[
X(Nk+i) = y

]
≥

s+T−1∑
k=s+τ∗

I
[
X(Nk+i) = y

]

=
s+T−1∑
k=s+τ∗

I
[
X(Nk+i) ∈ St∗

]
(b.c. St∗ = {y})

≥ πmin

s+T−1∑
k=s+τ∗

I
[
X(Nk+i−1) ∈ St∗−1

]
− |St∗ | (Lemma 6, X = St∗−1, Y = St∗)

≥ π2min

s+T−1∑
k=s+τ∗

I
[
X(Nk+i−2) ∈ St∗−2

]
− πmin|St∗−1| − |St∗ | (Lemma 6, X = St∗−2, Y = St∗−1)

≥ · · ·

≥ πt∗min

s+T−1∑
k=s+τ∗

I
[
X(Nk+i−t∗) ∈ S0 = X+

]
−
t∗−1∑
j=0

πjmin|St∗−j | (Lemma 6, X = S0, Y = S1)

≥ πt∗min(T − τ∗)−
t∗−1∑
j=0

πjmin2min{N,j}. (b.c. I
[
X(t) ∈ X+

]
= 1)

(33)

The proof is concluded by choosing the constants

l = πt
∗
min, B = τ∗πt

∗
min +

t∗−1∑
j=0

πjmin2min{N,j}. (34)

Remark 8 For a strictly positive distribution, the constants reduce to

l = πNmin, B = πNmin +

N−1∑
j=0

(2πmin)j = πNmin +
1− (2πmin)N

1− 2πmin
.

B.3 Herded Gibbs’s Transition Kernel T̃ (τ)
T is an Approximation to T

The following proposition shows that T̃ (τ)
T is an approximation to the regular Gibbs sam-

pler’s transition kernel T with an error of O(1/T ).

Proposition 9 For a fully connected graph, if the herded Gibbs has a fixed scanning order
and the corresponding Gibbs sampling Markov chain is irreducible, then for any τ ≥ 0,
T ≥ T ∗ := 2B

l where l and B are the constants in Proposition 5, the following inequality
holds:

‖T̃ (τ)
T − T ‖∞ ≤

4N

lT
. (35)
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Proof
When x 6∈ X+, we have the equality T̃ (τ)

T,i (x,y) = Ti(x,y) by definition. When x ∈ X+

but y 6∈ X+, then Nden = 0 (see the notation of T̃ (τ)
T for definition of Nden) as y will never

be visited and thus T̃ (τ)
T,i (x,y) = 0 = Ti(x,y) also holds. Let us consider the entries in

T̃ (τ)
T,i (x,y) with x,y ∈ X+ in the following.

Because X−i is not updated at ith step of every sweep, we can replace i − 1 in the
definition of Nden by i and get

Nden =
τ+T−1∑
k=τ

I(X(kN+i)
−i = x−i).

Notice that the set of times {t = kN + i : τ ≤ k ≤ τ + T − 1,Xt
−i = x−i)}, whose size is

Nden, is a consecutive set of times when wi,x−i is updated. By Lemma 1, we obtain a bound
for the numerator

Nnum ∈ [Ndenπ(Xi = yi|x−i)− 1, Ndenπ(Xi = yi|x−i) + 1]⇔

|P (τ)
T,i (Xi = yi|x−i)− π(Xi = yi|x−i)| = |

Nnum

Nden
− π(Xi = yi|x−i)| ≤

1

Nden
. (36)

Also by Proposition 5, we know every state in X+ is visited at a linear rate, there hence
exist constants l > 0 and B > 0, such that the number of occurrence of any conditioning
state x−i, Nden, is bounded by

Nden ≥
τ+T−1∑
k=τ

I(X(kN+i) = x) ≥ lT −B ≥ l

2
T, ∀T ≥ 2B

l
. (37)

Combining equations (36) and (37), we obtain

|P (τ)
T,i (Xi = yi|x−i)− π(Xi = yi|x−i)| ≤

2

lT
, ∀T ≥ 2B

l
. (38)

Since the matrix T̃ (τ)
T,i and Ti differ only at those elements where x−i = y−i, we can bound

the L1 induced norm of the transposed matrix of their difference by

‖(T̃ (τ)
T,i − Ti)

T ‖1 = max
x

∑
y

|T̃ (τ)
T,i (x,y)− Ti(x,y)|

= max
x

∑
yi

|P (τ)
T,i (Xi = yi|x−i)− π(Xi = yi|x−i)|

≤ 4

lT
, ∀T ≥ 2B

l
. (39)

Observing that both T̃ (τ)
T and T are multiplications of N component transition matrices,

and the transition matrices, T̃ (τ)
T and Ti, have a unit L1 induced norm as:

‖(T̃ (τ)
T,i )T ‖1 = max

x

∑
y

|T̃ (τ)
T,i (x,y)| = max

x

∑
y

P
(τ)
T,i (Xi = yi|x−i) = 1, (40)

‖(Ti)T ‖1 = max
x

∑
y

|Ti(x,y)| = max
x

∑
y

P (Xi = yi|x−i) = 1, (41)
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we can further bound the L1 norm of the difference, (T̃ (τ)
T −T )T . Let P ∈ RN be any vector

with nonzero norm. Using the triangular inequality, the difference of the resulting vectors

after applying T̃ (τ)
T and T is bounded by

‖P (T̃ (τ)
T − T )‖1 =‖P T̃ (τ)

T,1 . . . T̃
(τ)
T,N − PT . . . TN‖1

≤‖P (T̃ (τ)
T,1 − T1)T̃

(τ)
T,2 . . . T̃

(τ)
T,N‖1+

‖PT1(T̃ (τ)
T,2 − T2)T̃

(τ)
T,3 . . . T̃

(τ)
T,N‖1+

. . .

‖PT1 . . . TN−1(T̃ (τ)
T,N − TN )‖1, (42)

where the i’th term is

‖PT1 . . . Ti−1(T̃ (τ)
T,i − Ti)T̃

(τ)
T,i+1 . . . T̃

(τ)
T,N‖1 ≤ ‖PT1 . . . Ti−1(T̃

(τ)
T,i − Ti)‖1 (Unit L1 norm, Eqn. 40)

≤ ‖PT1 . . . Ti−1‖1
4

lT
(Eqn. 39)

≤ ‖P‖1
4

lT
. (Unit L1 norm, Eqn. 41)

(43)

Consequently, we get the L1 induced norm of (T̃ (τ)
T − T )T as

‖(T̃ (τ)
T − T )T ‖ = max

P

‖P (T̃ (τ)
T − T )‖1
‖P‖1

≤ 4N

lT
, ∀T ≥ 2B

l
. (44)

B.4 Proof of Theorem 3

When we initialize the herded Gibbs and regular Gibbs with the same distribution (see
Figure 12), since the transition kernel of herded Gibbs is an approximation to regular Gibbs
and the distribution of regular Gibbs converges to the invariant distribution, we expect that
herded Gibbs also approaches the invariant distribution.
Proof [Proof of Theorem 3] Construct an auxiliary regular Gibbs sampling Markov chain

initialized with π(0)(X) = P
(τ)
T (X) and the same scanning order as herded Gibbs. As η < 1,

the Gibbs Markov chain has uniform geometric convergence rate as shown in Equation (23).
Also, the Gibbs Markov chain must be irreducible due to η < 1 and therefore Proposition

9 applies here. We can bound the distance between the distributions of herded Gibbs after

one sweep of all variables, P
(τ+1)
T , and the distribution after one sweep of regular Gibbs

sampling, π(1) by

dv(P
(τ+1)
T − π(1)) = dv(π

(0)(T̃ (τ)
T − T )) =

1

2
‖π(0)(T̃ (τ)

T − T )‖1

≤ 2N

lT
‖π(0)‖1 =

2N

lT
, ∀T ≥ T ∗, τ ≥ 0. (45)

25



Chen et al.

Now we study the change of discrepancy between P
(τ)
T and π as a function as τ .

Applying the triangle inequality of dv:

dv(P
(τ+1)
T − π) = dv(P

(τ+1)
T − π(1) + π(1) − π) ≤ dv(P (τ+1)

T − π(1)) + dv(π
(1) − π)

≤ 2N

lT
+ ηdv(P

(τ)
T − π), ∀T ≥ T ∗, τ ≥ 0. (46)

The last inequality follows Equations (23) and (45). When the sample distribution is outside
a neighborhood of π, Bε1(π), with ε1 = 4N

(1−η)lT , i.e.

dv(P
(τ)
T − π) ≥ 4N

(1− η)lT
, (47)

we get a geometric convergence rate toward the invariant distribution by combining the two
equations above:

dv(P
(τ+1)
T − π) ≤ 1− η

2
dv(P

(τ)
T − π) + ηdv(P

(τ)
T − π) =

1 + η

2
dv(P

(τ)
T − π). (48)

So starting from τ = 0, we have a burn-in period for herded Gibbs to enter Bε1(π) in a
finite number of rounds. Denote the first time it enters the neighborhood by τ ′. According

to the geometric convergence rate in Equations 48 and dv(P
(0)
T − π) ≤ 1

τ ′ ≤

⌈
log 1+η

2
(

ε1

dv(P
(0)
T − π)

)

⌉
≤
⌈
log 1+η

2
(ε1)

⌉
= dτ∗(T )e. (49)

After that burn-in period, the herded Gibbs sampler will stay within a smaller neighborhood,
Bε2(π), with ε2 = 1+η

1−η
2N
lT , i.e.

dv(P
(τ)
T − π) ≤ 1 + η

1− η
2N

lT
, ∀τ > τ ′. (50)

This is proved by induction:

1. Equation (50) holds at τ = τ ′ + 1. This is because P
(τ ′)
T ∈ Bε1(π) and following

Eqn. 46 we get

dv(P
(τ ′+1)
T − π) ≤ 2N

lT
+ ηε1 = ε2. (51)

2. For any τ ≥ τ ′ + 2, assume P
(τ−1)
T ∈ Bε2(π). Since ε2 < ε1, P

(τ−1)
T is also in the

ball Bε1(π). We can apply the same computation as when τ = τ ′ + 1 to prove

dv(P
(τ)
T − π) ≤ ε2. So inequality (50) is always satisfied by induction.

Consequently, Theorem 3 is proved when combining (50) with the inequality τ ′ ≤ dτ∗(T )e
in Equation( 49).

Remark 10 Similarly to the regular Gibbs sampler, the herded Gibbs sampler also has a
burn-in period with geometric convergence rate. After that, the distribution discrepancy is
in the order of O(1/T ), which is faster than the regular Gibbs sampler. Notice that the
length of the burn-in period depends on T , specifically as a function of log(T ).

Remark 11 Irrationality is not required to prove the convergence on a fully-connected
graph.
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B.5 Proof of Corollary 4

Proof Since τ∗(T ) is a monotonically increasing function of T , for any T ≥ T ∗ + τ∗(T ∗),
we can find a number t so that

T = t+ τ∗(t), t ≥ T ∗.

Partition the sample sequence S0,T = {X(kN) : 0 ≤ k < T} into two parts: the burn-in
period S0,τ∗(t) and the stable period Sτ∗(t),T . The discrepancy in the burn-in period is
bounded by 1 and according to Theorem 3, the discrepancy in the stable period is bounded
by

dv(P̃ (St,T )− π) ≤ λ

t
.

Hence, the discrepancy of the whole set S0,T is bounded by

dv(P̃ (S0,T )− π) = dv

(
τ∗(t)

T
P̃ (S0,τ∗(t)) +

t

T
P̃ (Sτ∗(t),T )− π

)
≤ dv

(
τ∗(t)

T
(P̃ (S0,τ∗(t))− π

)
+ dv

(
t

T
(P̃ (Sτ∗(t),T )− π

)
≤ τ∗(t)

T
dv(P̃ (S0,τ∗(t))− π) +

t

T
dv(P̃ (Sτ∗(t),T )− π)

≤ τ∗(t)

T
· 1 +

t

T

λ

t
≤ τ∗(T ) + λ

T
. (52)
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