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Abstract: Shooting skill in the NBA is typically measured
by field goal percentage (FG%) – the number of makes out
of the total number of shots. Even more advanced met-
rics like true shooting percentage are calculated by count-
ing each player’s 2-point, 3-point, and free throw makes
and misses, ignoring the spatiotemporal data now avail-
able (Kubatko et al. 2007). In this paper we aim to better
characterize player shooting skill by introducing a new
estimator based on post-shot release shot-make probabil-
ities. Via the Rao-Blackwell theorem, we propose a shot-
make probability model that conditions probability esti-
mates on shot trajectory information, thereby reducing the
variance of the new estimator relative to standard FG%.
We obtain shooting information by using optical tracking
data to estimate three factors for each shot: entry angle,
shot depth, and left-right accuracy. Next we use these fac-
tors to model shot-make probabilities for all shots in the
2014–2015 season, and use these probabilities to produce
a Rao-Blackwellized FG% estimator (RB-FG%) for each
player. We demonstrate that RB-FG% is better than raw
FG% at predicting 3-point shooting and true-shooting per-
centages. Overall, we find that conditioning shot-make
probabilities on spatial trajectory information stabilizes
inference of FG%, creating the potential to estimate shoot-
ing statistics earlier in a season than was previously
possible.

Keywords: basketball; bayesian regression; optical
tracking; shot trajectories; variance reduction

1 Introduction
Field goal percentage is a common measure of shooting
skill and efficiency in the National Basketball Associa-
tion (NBA), and general shooting prowess is often defined
for players by their overall FG%. It can be used in its
raw form, or as a component of more advanced metrics
like true-shooting percentage (TS%) or effective field goal
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percentage (eFG%). Shooting percentages play a large role
in influencing both fan and coaching evaluation of play-
ers, and are often used to predict future player perfor-
mance when making decisions regarding free agency or
draft selection.

Predicting a player’s FG% given past shooting is a dif-
ficult task. Shooting percentages are highly variable, espe-
cially on longer shots like 3-point attempts. For example, it
takes roughly 750 3-point attempts before a player’s shoot-
ing percentage stabilizes, where over half of the variation
in their 3-point percentage (3P%) is explained by shoot-
ing skill, rather than noise (Blackport 2014). Additionally,
3P% has been shown to be an unreliable metric in terms
of its ability to discriminate between players and its stabil-
ity from one season to the next (Franks et al. 2016). As the
proportion of shot attempts taken as 3-pointers increases,
with total attempts having risen nearly 50% over the last
8 years (Young 2016), overall FG% becomes more variable
and less stable.

Part of the large variation in shooting percentages
is likely due to the many contextual factors that con-
tribute to the probability of a shot make. Improvements
to FG% prediction have been made by including some of
these covariates in shot-make prediction models (Piette,
Sathyanarayan, and Zhang 2010; Cen et al. 2015). How-
ever, because of the small differences that separate the
true shooting skill of players in the NBA, chance varia-
tion may also contribute significantly to the variation and
instability of FG%. Optical tracking data of shot trajecto-
ries can potentially reduce noise in shooting metrics by
allowing us to differentiate shots that rim out, air balls,
and (unintentional) banks, giving us more information
about players’ shooting skill with fewer shots. This idea
has been demonstrated recently during practice shoot-
ing sessions, where FG% augmented by precise shot fac-
tor information gathered during these sessions improved
the prediction of future shooting (Marty and Lucey 2017;
Marty 2018). Accurate estimates of shot factors using opti-
cal tracking data from live games may allow for a sim-
ilar improvement in the prediction of in-game shooting
metrics.

In this paper, we seek to reduce the variation in pre-
dicting player FG% using NBA optical tracking data. We
begin the paper by introducing a new estimator for FG%,
RB-FG%, based on aggregating shot-make probabilities.
Estimation of shot-make probabilities is then split into
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two main parts. First, using spatio-temporal information
provided by the tracking data, we model shot trajectories
in order to estimate the depth, left-right distance, and
entry angle of balls entering the basket. Next, we use a
regression model to estimate the probability of each shot
going in. We define the average of these estimated prob-
abilties, RB-FG%, as our new estimator of FG% for each
player. Finally, we compare the predictive ability of the RB-
FG% estimator to its raw counterpart that does not utilize
trajectory information.

2 The Rao-Blackwellized
estimator

In this section we introduce our new estimator for FG%
based on shot-make probabilities. When trying to predict
a player’s future FG% using their past FG%, each shot
Xi is treated as Bernoulli random variable with proba-
bility of success θ, where θ is a measure of the player’s
true FG%. However, shot trajectories provided by optical
tracking data give us more information for each shot than
simply whether it is a make or a miss. Incorporating this
information into a shot model may allow us to reduce the
variance involved in estimating and predicting shooting
skill. Therefore, we can define an alternative model where
the probability of a shot-make varies depending on its
trajectory, and shots are modeled as Beta-Bernoulli ran-
domvariables Xi ∼ Bern(pi)with pi ∼ Beta(θv, (1−θ)v),
where again θ is the true FG% of a player, defining their
corresponding Beta distribution of shot-make probabil-
ties. Each player’s shooting ability is now modeled by a
Beta distribution, and the probability of a shot going in fol-
lows a Bernoulli distribution indexed by pi, where pi is a
draw from that player’s Beta distribution.

As shown below, inference under the model in which
shots are treated as Bernoulli random variables and infer-
ence under the expected Beta-Binomial of our new model
is the same (Skellam 1948). LetΠ(Xi|θ, v) be the likelihood
of the expected Beta-Binomial distribution, i.e. the likeli-
hood of the Beta-Binomial distribution if youmariginalize
out the pi’s, and let B(·) be the beta function.

Π(Xi|θ, v) ∝
1∫︁

0

pXi+θv−1
i (1 − pi)(1−θ)v−Xi

B(θv, (1 − θ)v) dpi

∝ B(Xi + θv, 1 − Xi + (1 − θ)v)
B(θv, (1 − θ)v)

∝ θXi (1 − θ)(1−Xi)

Therefore, inference for θ is the same under the
Bernoulli and expected Beta-Binomial distributions.
Furthermore, suppose we obtain Xi (make or miss) and
pi (the probability that shot i will go in). Let Π(Xi , pi|θ, v)
be the joint distribution of Xi and pi. It follows that:

Π(Xi , pi|θ, v) = Π(Xi|pi)Π(pi|θ, v)

where Π(Xi|pi) and Π(pi|θ, v) are the Bernoulli and Beta
distributions, respectively. Consequently we have that
given pi, Xi is independent of θ. Thus pi is sufficient for θ.
Now let θ̂ be the raw FG%estimate and θ̂RB be the RB-FG%
estimate. We have:

θ̂ =
1
N

N∑︁
i=1

Xi (FG%)

θ̂RB = E
(︀
θ̂|p1, . . . , pN

)︀
=

1
N

N∑︁
i=1

pi (RB-FG%)

Thus the RB-FG% is simply the conditional expecta-
tion of raw FG% given these shot-make probabilities pi.
Because under the Beta-Binomial model pi is sufficient for
θ, by the Rao-Blackwell Theorem we have:

MSE
(︀
θ̂RB

)︀
≤ MSE

(︀
θ̂
)︀

Unfortunately, we are unable to know the true prob-
ability that a shot will go in. Therefore, as decribed
below, we will use estimates of shot-make probabilities
based on shot trajectory information to obtain an esti-
mate of RB-FG%. Using an estimate of θ̂RB means that
the inequality above does not necessarily hold. How-
ever, as we will see in Section 4, our estimates of shot-
make probabilites are accurate and precise enough that
this estimate of θ̂RB still leads to a decrease in vari-
ance and prediction error relative to raw FG%. For sim-
plicity, moving forward we will refer to the RB-FG%
estimator based on estimated shot-make probabilities
as θ̂RB.

3 Estimating shot-make
probabilities

3.1 Measuring shot factors

In order to estimate shot-make probabilities, we first mea-
sure three shot factors based on how each shot entered the
basket – left-right accuracy, depth, and entry angle – fol-
lowing the procedure ofMarty and Lucey (2017).We define
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left-right accuracy as the deviation of the ball from the
centre of the hoop as the ball crosses the plane of the bas-
ket (Figure 1A). Shot depth is defined as the distance of the
ball from a tangent line through the front of the hoop as
the ball crosses the plane of the basket (Figure 1A), with
the front of the hoop adjusted to be from the perspective
of the shooter. We specify the adjusted front of the rim as
depth 0, so a shot crossing the basket plane at the center of
the hoop has a depth of 9 inches. Finally, the entry angle
is defined as the angle between the plane of the hoop and
a tangent line through the ball as it is entering the basket
(Figure 1B). See Marty and Lucey (2017) for further detail
regarding these measurements.

To obtain these shot factor estimates, we use shot tra-
jectory information provided by the SportVu optical track-
ingdata fromSTATSLLC. Thedataprovidesmeasurements
of the X and Y coordinates for all 10 players and X, Y, and
Z coordinates of the ball 25 times per second. Our dataset
consists of 1212 games from the 2014–2015NBA regular sea-
son and 1206 games from the 2015–2016 regular season.
We first restrict our analysis to 3-point shots as these shots
have the most trajectory information and we can assume
all shooters are attempting to hit the centre of the basket
(no shot attempts purposely off the backboard). In total
our dataset consists of trajectory information for 47,631 3-
point shots from the 2014–2015 season and 49,876 3-point
shots from the 2015–2016 season.

Although the optical tracking data gives X, Y, and Z
coordinates of the ball at the basket, the location data is
noisy, especially in measuring the height of the ball. To
obtain a better estimate of the position of the ball near
the basket we model a quadratic best fit line through the
trajectory data given by the tracking database. If Zi is the
height of shot i, and xi and yi are the X, Y coordinates of

the shot in the tracking data, we use a quadratic polyno-
mial to model the height, and estimate the coefficients by
a least-squares regression:

E(Zi) = β0 + β1xi + β2yi + β3x2i + β4y2i + β5xiyi (1)

We use the point where the model specifies the ball
crosses 10 feet in height as the estimated X, Y location of
the ball at the basket, and use this location to calculate the
shot’s depth, left-right accuracy, and entry angle.

We compare the above model with a second model in
which we try to leverage pre-existing knowledge of shot
trajectories. We know each shot starts at the player’s loca-
tion at the timeof release (player location is less noisy than
ball location in the tracking database) and ends around
the basket. Therefore, we can improve estimation by bias-
ing the start and end points of our modeled trajectories
to incorporate this prior knowledge. To accomplish this
we introduce a Bayesian regression model using pseudo-
data to establish priors that reflect this knowledge. This
is an informal empirical Bayes method where instead of
using data to estimate the priors, we use prior knowl-
edge of how the data should look. Given the quadratic
model (1) for each shot, we can specify a Bayesian regres-
sion model with a conjugate Normal prior for β of the
form ρ(β|σ2, z, X) ∼ N(u0, σ2Λ−1

0 ). This results in a con-
jugate inverse gamma prior for σ2 written as ρ(σ2|z, X) ∼
IG(a0, b0). We can then update our mean and precision
parameters as:

un =
(︀
XTX + Λ0

)︀−1(︀
Λ0u0 + XTXβ̂

)︀
,

Λn =
(︀
XTX + Λ0

)︀

Straight shot

A
B

Left-right distance

Depth distance

Shooter

Shooter

Entry angle

Figure 1: Shot factors at the plane of the hoop. (A) denotes the left-right and depth factors, (B) denotes the entry angle factor.
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where un is the posterior mean of β, and Λn is the posterior
precision matrix for β. We update the parameters twice,
once using pseudo-data reflecting our prior knowledge
of where shots start and finish, and a second time using
the shot trajectory data from the optical tracking data. We
specify 4 pseudo-data points, 2 at the start of the shot
set at the X, Y coordinates of the player when the shot is
released and at a height of 7 feet, and 2 set at the centre
of the hoop and at 10 feet in height. After two Bayesian
learning updates we take the posterior mean of β, u2, and
use it as the estimate for the coefficients in the quadratic
polynomial model (1).

We then use (1) to compute the 3 shot factors for
each shot using both the ordinary linear regression (OLR)
and Bayesian regression approaches. Comparing the two
models, we find both predict shots to have a mean depth
value of 11′′, a mean left-right value of 0′′, and a mean
entry angle around 45°. As in Marty and Lucey (2017) we
find shots entering the basket at 11′′ in depth, 2′′ deeper
than the centre of the basket, and 0′′ in left-right accu-
racy are made with the highest percentage. However, we
find shot depths are evenly distributed around 11′′, in
contrast to the findings of Marty and Lucey (2017) who
found that shooters have a mean shot depth value of 9′′,
at the centre of the hoop. The variance in left-right dis-
tance and entry angle between the two models is simi-
lar, however the variance in shot depth is much larger
in the OLR compared to the Bayesian regression model

(Figure 2). Overall, variances in shot factors under the
Bayesian model match the variances of the precise shot
factor measurements of Marty and Lucey (2017) more
closely than the OLRmodel. Furthermore, wewill see later
that whenwemodel shot probabilities the Bayesianmodel
produces a lower misclassification rate and log loss than
the OLR model. Moving forward, we decide to use shot
factors calculated via the Bayesian regression model.

We next compare the precision of our estimated shot
factors to thosemeasuredby theNoahShooting System–a
dedicated hardware install found in practice facilities that
provides shooting information not available in live games.
Marty andLucey (2017)were able to use theNoah system to
define a Guaranteed Make Zone (GMZ) of over 90% based
on these shot factors. Their GMZ is marked by shots with
an entry angle of 45°, a left-right accuracy between -2′′ and
2′′, and a depth between 7′′ and 14′′. Using our estimated
shot factors, we found shots in this GMZ are made only
85.2% of the time. This suggests that despite the Bayesian
model, our shot factor estimates are still less precise than
those gathered by the Noah system.

3.2 Modeling shot-make
probabilities

In this section we train a shot-make probability model
using 3-point shots from the 2014–2015 season. To obtain

Figure 2: Estimated shot factor measurements under the ordinary and Bayesian regression models. Left/right and depth measurements
are given as distance in feet in relation to the centre of the basket, where the depth of the centre of the basket is 0.75 feet. Entry angle
measurements are given in radians to allow for the values to be on the same axis.
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shot-make probabilities for each shot, we use the esti-
mated shot factors described previously as covariates in a
logistic regression:

P(Si = 1) = σ

⎛⎜⎜⎜⎝
β0 + β1D̂i + β2L̂Ri + β3Âi +

β4D̂2
i + β5L̂R

2
i + β6Â2

i +

β7D̂i * L̂Ri + β8D̂i * Âi + β9L̂Ri * Âi

⎞⎟⎟⎟⎠
(2)

where Si is an indicator function equal to 1 when a
shot goes in and 0 went it misses, i indexes all 3-point
shots from the 2014–2015 season (N= 47,631), σ(x) =
exp(x)/(1 + exp(x)), and D̂i, L̂Ri, and Âi are the esti-
mated depth, left-right distance, and entry angle of
shot i, respectively. We note that the Rao-Blackwell
inequality indicates the framework detailed in Section 2
holds regardless of the choice of shot probability model,
given the model provides reasonable estimates of shot
probabilities.

Although our Bayesian regression model biases shot
trajectories toward the basket, some trajectories are still
quite variable. Modeled trajectories that are too far from
the raw data are removed and instead assigned a prob-
ability of 1 or 0 for a make or miss, respectively. We use
factors from the remaining shots to estimate shot-make
probabilities with model (2). To assess how accurate the
model is we perform a 10-fold cross-validation to obtain
the mean misclassification rate, as well as calculate the
log loss andBrier score.We repeat this procedurewith shot

Table 1:Mean misclassification rate, brier score, and log loss of
model (2).

Misclassification Brier Log
rate score loss

Grand mean NA 0.228 0.648
OLR 0.246 0.176 0.528
Bayesian regression 0.204 0.160 0.491

Log loss and Brier scores are based on shot-make probability
predictions from model (2) for 3-point shots from the 2015–2016
NBA season. The covariates are estimated via the Bayesian
regression and OLR methods described in Section 3.1, while the
Grand Mean is the league-wide 3P% for the 2014–2015 season. The
mean misclassification rate is the result of 10-fold
cross-validation.

factors estimated from the OLR model, and the results are
shown in Table 1.

The covariates estimated via Bayesian regression
resulted in misclassification rate 0.204. Therefore, our
Bayesian model is able to predict makes/misses correctly
about 80% of the time. This is a higher rate than many
shot predictionmodels that use contextual covariates, like
those presented in Cen et al. (2015) which utilize variables
such as distance to basket and nearest defender to pre-
dict shot-makes with 65% accuracy. Similar to probabili-
ties based on raw FG% (Marty and Lucey 2017), predicted
shot-make probabilities are highest for shots at 11 inches
depth, 0 inches of left-right deviation, and similar for shots
with entry angles in the mid-40s. These can be seen in
relation to the basket in Figure 3.
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Figure 3: (A) shows the distribution of mean predicted shot-make probabilities over different shot entry angles. Included are all 3-point
shots in the 2014–2015 season in which trajectory information is used to train our model (2). (B) shows the distribution of predicted
shot-make probabilities over different values of shot depth and left-right accuracy in relation to the basket.
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4 Applications of the RB-FG%
estimator

4.1 Predicting three-point field goal
percentage

In this section we aim to create a new estimate for player
FG% by aggregating estimated shot-make probabilities
given by (2). Without loss of generality, we focus first on
3-point shots for clarity of presentation.Wegather shot tra-
jectories for 3-point shots taken from the first half of the
2015–2016 NBA season in the SportVu tracking database
(N= 24,855), andpredict the probability of each shot going
in using model (2) trained by shots taken in the 2014–2015
season. The mean of these estimated shot-make probabil-
ities is the RB-FG% estimate, θ̂RB, for each player’s FG%.
We wish to see whether θ̂RB is better than raw FG%, θ̂, at
predicting a player’s future FG%, θ.We find thatwhen pre-
dicting 3-point FG% in the second half of the 2015–2016
season, θ̂RB outperforms θ̂ in terms of mean absolute error
(Table 2). Interestingly, as seen similarly in Brown (2008),
θ̂ is quite a poor predictor of future shooting. It performs
worse than simply using the league-wide grand mean as a
predictor for every player (Table 2).

As mentioned in Section 2, due to the uncertainty in
our shot factor estimates resulting from the noise in the
optical tracking data, we do not know each shot’s true
make probability. We can analyze how sensitive our esti-
mator θ̂RB is to deviations in shot factor estimates by recal-
culating each shot’s depth, left-right accuracy, and entry
angle based on sampling from the posterior distribution
of the parameters in (1). We find that simulated estimates
based on resampled shot factors perform nearly as well
as those based on the mean parameter values from (1),
and still vastly outperform raw FG% (Figure 4). Further-
more, we also find that the accuracy of our shot-make
probabilitymodel (2) is important in determining the accu-
racy of θ̂RB. Removing the quadratic and interaction terms
in (2) results in less accurate probability estimates, and

we find this increases the mean absolute prediction error
of θ̂RB from 0.0590 to 0.0608, respectively. However, this
weakened estimator still outperforms raw FG%.

In addition to assessing prediction accuracy, we can
also investigate whether the RB-FG% estimator produces
more consistent player rankings than raw FG%. We calcu-
late θ̂ and θ̂RB for 3P% in the first and second half of the
2015–2016 season and rank all 260 players in our analy-
sis according to each estimate. The θ̂ and θ̂RB estimates
produce Spearman’s rank coefficients of 0.216 and 0.245,
respectively. We find, using the tests detailed in Fieller,
Hartley, and Pearson (1957), that although RB-FG% pro-
duces a higher rank correlation than raw FG%, it is not
significantly higher.

Rao-Blackwellizing the estimator for FG%does reduce
variance and improve the prediction accuracy, but these
estimators are based on low sample sizes for most play-
ers. Players in our dataset take between 3 and 402 three-
point attempts in the first half of the 2015–2016 season,
far fewer than the number needed for 3P% to stabilize
(see Section 1). We are able to further reduce the vari-
ance of θ̂RB by introducing a empirical Bayesian shrink-
age factor towards a Beta prior, B(α0, β0) (Casella 1985).
We choose the hyperparameters of the Beta prior based
on the posterior mean 3P% in the first half of the 2015–
2016 season (0.35), and tune α0 in terms of minimizing the
mean absolute error of θ̂RB. We end up applying a prior
distribution to each player’s first half 3-point shooting of
the form B(3.5, 6.5), in essence adding 10 league-average
shots to θ̂ and θ̂RB. Shrunk-RB estimates are calculated by
the expected value of the updated Beta distribution as:

θ̂Shrunk-RB =
3.5 + θ̂v̂

3.5 + 6.5 + θ̂v̂ + (1 − θ̂)v̂
(3)

Table 2 shows that the shrunk-RB estimator is a bet-
ter predictor than the shrunk-raw estimator, and this
improvement is illustrated in Figure 5. Hence while Rao-
Blackwellizing significantly improves prediction, leverag-
ing knowledge about the distribution of 3P%’s can further
improve the RB-FG% estimator (Efron and Morris 1977).

Table 2:Mean absolute prediction errors of FG% estimators.

Raw Grand mean RB Shrunk raw Shrunk RB

3-point shots 0.0790 0.0620 0.0590 0.0689 0.0572
Free throws 0.0809 0.0834 0.0713 0.0702 0.0691
2-point shots 0.0549 0.0486 0.0502 0.0440 0.0428

True-shooting 0.0467 0.0436 0.0408 0.0417 0.0379

Estimators are for FG% in the first half of the 2015–2016 NBA season, with errors based on the prediction of FG% in the second half of
2015–2016. The raw estimator uses make/miss data, while the Rao-Blackwell (RB) estimator uses predicted shot-make probabilities.
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Figure 4: The distribution of out-of-sample prediction errors for raw, Rao-Blackwellized (RB), simulated RB 3P%’s for 260 players from the
2015–2016 season. Errors are taken as the absolute difference between players’ (estimated) 3P% in the first half of the 2015–2016 season
and their true 3P% in the second half of the season. The RB estimators are calculated by averaging shot-make probabilities given by (2).
Simulated RB estimators are calculated in the same way as the RB case, except shot factors are measured by first resampling from the mul-
tivariate normal distribution on the parameters in (1) (rather than taking their mean as in the RB estimators). Players are separated by the
number of 3-point shots attempted in the first half of the 2015–2016 season.

Figure 5:Mean prediction error for the raw, Rao-Blackwellized, and
shrunk-Rao-Blackwellized 3-point FG% estimators of 20 players
in the first half of the 2015–2016 season. Errors are measured for
predicting 3-point FG% in the second half of 2015–2016.

In addition to predicting future shooting, we can also
use θ̂RB to estimate players’ 3P% with less data than
when using θ̂. The root-mean-square error (RMSE) of both

estimators for inferring end-of-season 3P% is presented
in Figure 6. RB-FG% has a lower RMSE than FG% when
calculated using less than 30% of games, and the biggest
improvements occur with low sample sizes. Some bias is
introduced by RB-FG% as shot probabilities are modeled
in (2) using the entire set of 3-point shots, while estimates
are calculated seperately for eachplayer.Weonlyuse a sin-
gle set of priors to estimate shot factors in our Bayesian
regression, but each player should have their own set of
priors due todifferences inheight and shooting style.How-
ever, specifying individual priors and creating separate
shot trajectory models for each player is difficult because
most players take too few shots to obtain accurate param-
eter estimates. Additionally, the reduction in variance out-
weighs the small level of bias introduced by θ̂RB (Figure 6).
Because we are comparing these estimators to raw FG%
on the full sample, the raw estimator becomes better if we
calculate RMSE using more than 40% of games. However,
even full-season shootingnumbers are highly variable and
based on low sample sizes for most players. Thus RB-FG%
is a better overall estimate on any size of data, but for small
sample sizes it is a better estimate of end-of-season FG%
than FG% itself.
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Figure 6: The RMSE of θ̂ and θ̂RB estimating players’ true 3-point FG% for the 2014–2015 NBA season. These estimators are calculated using
shots from a subset of games and compared to each player’s 3-point FG% at the end of the season. RMSE is calculated separately for each
sub-box using 5%, 10%, 15%, 20%, 25%, and 30% of the games from the 2014–2015 season.

4.2 Predicting true shooting percentage

Although we’ve focused on three-point shots, we are able
to Rao-Blackwellize any shooting statistic provided we
have enough trajectory information to accurately estimate
shot factors. We now expand our selection of shots and
try to improve predictions of TS% using our shot fac-
tor and shot probability models. We repeat the proce-
dure described in Section 3 to estimate shot factors for all
two-point shots and free throws in the 2014–2015 season,
and use these to create separate Rao-Blackwellized two-
point FG% and free throw percentage (FT%) estimates.
As before, shots that do not have enough location data
or result in trajectory predictions very far from the raw
data are not included in training or prediction datasets.
In total, shot-make probabilities are estimated for 21,153
out of 24,832 free throws and 21,890 out of 73,925 two-point
shots, with remaining probabilities assigned as 1 or 0 for a
shot make and miss, respectively. The new RB estimators
are again used to predict two-point FG%, FT% and TS%
in the second half of the 2015–2016 season. As with 3P%,
we find the shrunk Rao-Blackwellized estimator for TS%
results in the lowest mean absolute error (Table 2).

Rao-Blackwellizing 2-point shots results in only a
modest decrease in mean absolute error compared to
the shrunk raw estimator. This may be because we are
only able to estimate shot-make probabilities for a small
fraction of two-point shots using the optical tracking
database. Many 2-point shots are taken close to the bas-
ket or intended as bank-shots, resulting in insufficient or
inaccurate trajectory information. These 2-point shots are
not included inourpredictionmodel and thus 2-point FG%
is only partially Rao-Blackwellized. Interestingly, Rao-
Blackwellizing FT%also resulted in only aminor improve-
ment in prediction. This is not due to lack of trajectory
information as most free throws are included in our shot-
make model, but may be because free throws more closely
follow a Bernoulli distribution than either 2-point or 3-
point shots. Free throws are certainly more homogeous
thanother shot attempts as they are not affectedby contex-
tual factors like changing shot distance or defender pres-
sure. There has been some research showing serial cor-
relation between free throws (Arkes 2010). Though even
when shown this effect is considerably smaller than the
effects contextual factors have on field-goal shot-make
probabilities. The closer that a player’s free throwattempts
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follow a Bernoulli distribution, the less potential there is
to decrease themean-squared error of the raw estimator of
FT% throughRao-Blackwellization. If a player’s free throw
attempts perfectly followaBernoulli distribution the num-
ber of makes and misses becomes a sufficient statistic for
FT% and Rao-Blackwellizing would give no improvement
in prediction accuracy.

4.3 Example of an improvement in inferring
player FG%

We now present an example of when evaluating a player
using θ̂RB instead of θ̂ may change the interpretation
of that player’s shooting and prediction of their future
FG%. After signing with Miami Lebron James improved
his 3-point shooting ability drastically, shooting 36.5%
from three during the 2010–2011 to 2014–2015 seasons
compared to just 32.9% in his first 7 seasons in Cleve-
land (Paine 2016). However, during the 2015–2016 season
Lebron shot just 30.9% from three. Was there a real dif-
ference in his 3-point shooting ability during this season
compared to the previous 5? If we attempt to answer this
question using raw FG%, we can estimate a 90% con-
fidence interval via a normal approximation of (0.264,
0.354). Thus with 90% confidence we can say there was a
real difference between Lebron’s 3-point shooting during
2015–2016 compared to the previous 5 years. More tradi-
tional advanced metrics also fail to explain James’s dip in
3-point FG%. Compared to the 2014–2015 season (where
James shot 35.4% from three), in 2015–2016 he shot from
more favorable 3-point zones, shot fewer threes late in the
shot clock, more of his threes came from assists, and fewer
threes came against “tight” defensive pressure as classi-
fied by the SportVu tracking data (Paine 2016). All these
indicators suggest that James’s 3-point shooting should
have improved in 2015–2016, yet he shot his poorest per-
centage since his rookie year. Based on these statistics,
one may have concluded that there was a real decrease
in 3-point shooting skill during the 2015–2016 season, and
we may have predicted that this poor shooting would con-
tinue in upcoming seasons. However, if we instead use
RB-FG% as an estimator of 3P%, we estimate his 3-point
percentage during 2015–2016 to be 34.7%, with a 90% con-
fidence interval of (0.321, 0.374). Therefore, according to
his RB-FG% Lebron did not have an appreciable decline
in 3-point shooting ability, and we would predict that his
FG% should revert back to somewhere around his average
over the previous 5 years. As we’ve seen, this has indeed
been the case as his 3P% returned to 36.3% and 36.7%
during the 2016–2017 and 2017–2018 seasons, respectively.

5 Discussion and conclusion

In this paper we were able to construct an improved esti-
mator for FG% based on shot-make probabilities calcu-
lated from shot trajectories. Via the Rao-Blackwell theo-
rem, we demonstrated that if we model shots according
to a Beta-Bernoulli distribution, rather than a Bernoulli,
aggregating shot-make probabilities for individual play-
ers is a more accurate estimator for future shooting than
raw FG%. Shot trajectory data has been shown to improve
estimation of FG% in other contexts. Marty (2018) demon-
strates, using precise shot data captured by Noahlytics
during practice shooting sessions, that raw shooting per-
centage augmented with 9 spatial rim patterns is a bet-
ter estimate of shooting skill than raw FG%. We are able
to extend this idea to live games, and show that shot
features measured using the less precise optical track-
ing data can still provide improvement in FG% prediction
and estimation. Our method differs in that we create a
new shooting statistic, one based on shot-make probabil-
ities only, rather than use raw FG% augmented with spa-
tial features. Comparing the estimation ability of θ̂RB and
Marty’s raw FG% augmented with spatial features is not
explored in this paper, but both methods show distinct
improvementswhenperforming estimation on low sample
sizes.

Another way to quantify the quality of our Rao-
Blackwellized metrics is to measure how well they are
able to discriminate between players. We can accomplish
this by comparing the discriminationmeta-metric for Rao-
Blackwellized and raw shooting metrics (Franks et al.
2016). This meta-metric quantifies the fraction of variance
between players that is due to differences in true shoot-
ing skill. Table 3 shows that RB-3P% and RB-TS% are both
more discriminative metrics than their raw counterparts.
Franks et al. (2016) also define the meta-metric stability:
the fraction of total variance in a metric that is due to true
changes in player skill over time, rather than chance vari-
ability. We did not calculate this meta-metric as we do not
have enough seasons of trajectory data to obtain accurate
estimates.

Table 3: Discrimination values for raw and Rao-Blackwellized
shooting metrics.

Raw 3P% RB-3P% Raw TS% RB-TS%

Discrimination 0.432 0.548 0.713 0.804

Estimates are based on Discrimination metrics for the 2014–2015
season. The RB metrics are shrunk as defined in Section 4.1.
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There have been many other models that use game-
specific context variables like defender distance and shot
location to try and estimate the probability that shots will
go in (Chang et al. 2014; Cen et al. 2015). These mod-
els attempt to stabilize FG% estimation by controlling for
external covariates that can affect shot-make probabili-
ties. However, θ̂RB should still improve on these models
because our estimated shot factors are sufficient for all
in-game contextual variables that contribute to shot-make
probabilities. Including the location of the shot or the
nearest defender distance should not change the proba-
bility a shot will go in given its depth, left-right accuracy,
and entry angle at the basket. We are able to classify shots
correctly 79.6% of the time using predicted make proba-
bilities based on trajectory information, higher than the
61% classfication rate we found using nearest defender
distance and shot location as predictors of raw FG%, and
also higher than those found in more complex contex-
tual models (Chang et al. 2014; Cen et al. 2015). Addition-
ally, adding shot-distance and nearest-defender distance
as dimensions to RB-FG% did not improve classification.

Because RB-FG% allows us to more accurately esti-
mate true FG% with smaller sample sizes, we should be
able to more accurately predict how contextual shooting
variables like defender distance impact a player’s shoot-
ing. Unfortunately, it is difficult to compare coefficients for
contextual variables when fitting predicted probabilities
compared to a binary shot response (make/miss) because
we are estimating coefficients using different loss func-
tions. Therefore, when we try to compare these coefficient
estimates to a “true” value, for example how defender-
distance affects FG% for a player over the entire season,
we are comparing two estimated coefficients to a “true”
coefficient value which is also estimated using a binary
shot response. Even if the coefficient for defender dis-
tance estimated using θ̂RB as a response is a better indi-
cator of how a player responds to defensive pressure, it
is difficult to compare this to any standard value for that
player.

Although all NBA teams almost exclusively use raw
FG% and its aggregate statistics to evaluate player shoot-
ing,many teams use shot trajectory characteristics to eval-
uate and coach player shooting in practice. The Noah
Shooting System is used by a number of teams to ana-
lyze player shooting and to improve shot trajectories dur-
ing practice shooting sessions. Analysis of trajectories in
games, however, is not typically done due to the noisiness
of the location data in the SportVu database. This paper
provides a method to utilize in-game shot trajectories pro-
vided by the optical tracking data to better evaluate and
predict player shooting.
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