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Using in-game shot trajectories to better
understand defensive impact in the NBA

Daniel Daly-Grafstein∗ and Luke Bornn
Department of Statistics, Simon Fraser University, Burnaby, British Columbia

Abstract. As 3-point shooting in the NBA continues to increase, the importance of perimeter defense has never been greater.
Perimeter defenders are often evaluated by their ability to tightly contest shots, but how exactly does contesting a jump shot
cause a decrease in expected shooting percentage, and can we use this insight to better assess perimeter defender ability? In
this paper we analyze over 50,000 shot trajectories from the NBA to explain why, in terms of impact on shot trajectories,
shooters tend to miss more when tightly contested. We present a variety of results derived from this shot trajectory data.
Additionally, pairing trajectory data with features such as defender height, distance, and contest angle, we are able to evaluate
not just perimeter defenders, but also shooters’ resilience to defensive pressure. Utilizing shot trajectories and corresponding
modeled shot-make probabilities, we are able to create perimeter defensive metrics that are more accurate and less variable
than traditional metrics like opponent field goal percentage.
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1. Introduction

Perimeter defense in the NBA involves defenders
attempting to stop, contest, or block outside jump
shots by the opposing team. With three-point attempt
rates continuing to rise, players’ perimeter defensive
ability is an important factor in determining a team’s
defensive success. However, it is difficult to quan-
tify the ability of perimeter defenders. Additionally,
while it is well-known that tightly contesting out-
side shots results in poorer shooting (Chang et al,
2014), little has been done to study why contesting
shots decreases field-goal percentage (FG%) and how
contests affect the trajectory of shots (Lucey et al,
2014).

Defensive metrics are in general more difficult to
measure and, traditionally, provide us less informa-
tion than their offensive counterparts (Franks et al,
2015b). Common box score metrics such as blocks
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and steals rely on discrete and easily countable events
that do not provide us with a full picture of a player’s
defensive ability. Metrics like opponent FG% and
perimeter defense rating that try to quantify perime-
ter defense still rely on counting discrete events and
can be highly variable (Oliver, 2004). For exam-
ple, players’ opponent 3P% (three-point percentage
where the given player is the closest defender) has
almost zero correlation year-to-year (Narsu, 2017).
Even commonly used advanced metrics like defen-
sive rating and adjusted plus/minus do not give us
information about why certain defenders are effective
or not. With the introduction of player tracking data,
a suite of new defensive metrics have been devel-
oped to try and fill the gap between offensive and
defensive metrics (Franks et al, 2015b; Goldsberry
and Weiss, 2013). While many of these new metrics
do incorporate spatial player information, they still
do not utilize the shot trajectory information given
by the optical tracking data. Metrics that are based
solely on binary make/miss shot information can be
unstable, as a player’s FG% over a single season is
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inherently low sample size and may be highly vari-
able (Daly-Grafstein and Bornn, 2019). Additionally,
these metrics still do not address the question of how
contesting shots causes them to miss more frequently.

In this paper we introduce a variety of results
derived from shot trajectories in an attempt to quan-
tify how contesting shots affects shooting percentage.
We begin by using spatio-temporal information pro-
vided by optical tracking data to estimate shot trajec-
tories and shot-make probabilities. We quantify each
trajectory using three shot factor measures: depth,
left-right distance, and entry angle (Daly-Grafstein
and Bornn, 2019; Marty, 2018; Marty and Lucey,
2017), and use these shot factors to model shot-make
probabilities. Next, we pair defender and trajectory
information to explore how trajectories vary in rela-
tion to open vs. contested shots, and how defender
height and distance affect shot angles and shot depths.
In Section 4, we show using regression models that
metrics derived from shot trajectory information sta-
bilize inference, allowing us to estimate defender skill
and shooter resiliency to defensive pressure in fewer
games than when using FG%.

2. Estimating shot-make probabilities

2.1. Dataset

The data used for our analysis is the SportVu
spatio-temporal tracking data provided by STATS
LLC. This optical tracking data provides the x and
y coordinates of the 10 players on the court and the
x, y, and z coordinates of the ball at 25Hz. The data
are also tagged with play-by-play event codes that
indicate when events such as shots, dribbles, passes,
etc. take place. We restrict our analysis to 50,916
three-point shots from the 2014-15 season. Following
the approach of Daly-Grafstein and Bornn (2019),
we now present a model for estimating shot-make
probabilities.

2.2. Estimating Shot Trajectories

To accurately estimate the ball’s x, y, and z coor-
dinates near the basket, we fit a quadratic best fit line
through the trajectory of each shot i of the form:

Zi = β0 + β1xi + β2yi + β3x
2
i + β4y

2
i + β5xiyi + εi

εi ∼ N(0, σ2) (1)

We estimate the coefficients in (1) using a Bayesian
regression with a conjugate Gaussian prior for β

of the form ρ(β|σ2, z, X, Y ) ∼ N(u0, σ2�−1
0 ), and

a conjugate inverse gamma prior ρ(σ2|z, X, Y ) ∼
IG(a0, b0). Here u0 and �0 are the prior mean and
precision matrix for β, and a0 and b0 are the shape
and scale parameters of the inverse-gamma prior for
σ2, respectively (Daly-Grafstein and Bornn, 2019).
The parameters of these priors are modeled using
non-informative conjugate hyperpriors updated with
pseudo-data reflecting our prior knowledge of shot
trajectories. We introduce these priors to bias shot
trajectories to locations we suspect shots will start
and end from to try and get more accurate trajectory
estimations in relation to the basket. We specify 4
pseudo-data points: 2 set at the x, y location of the
shooter and 7 feet in height, and 2 set at the cen-
tre of the basket and 10 feet in height. After updates
using the pseudo-data and optical tracking data, we
take the posterior mean of β as our estimate for the
coefficients in (1) (Figure 1).

We then use (1) to calculate three shot factors for
each trajectory - the shot depth, left-right distance,
and entry angle - following the procedure of Marty
and Lucey (2017). Shot depth is defined as the per-
pendicular distance of the ball to the front rim as it
enters the basket. Left-right distance is defined as the
perpendicular distance of the ball to the center of the
hoop. Entry angle is defined as the angle between the
ball and the rim as it enters the basket. See Marty and
Lucey (2017) and Daly-Grafstein and Bornn (2019)
for further details.

Fig. 1. A graphical depiction of the shot trajectories from the
SportVu database. The points represent data from the optical track-
ing database, while the smooth lines represent our modeled best-fit
lines estimated using the Bayesian regression model (1).
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2.3. Modeling Shot-Make Probabilities

The shot trajectories and derived shot factors
described above give us more information on each
shot than simply whether it is a make or a miss.
If we summarize this trajectory information in a
shot-make probability model, we can effectively Rao-
Blackwellize shooting metrics and their derivatives
by conditioning each shot’s binary outcome on its
make probability (Daly-Grafstein and Bornn, 2019).
To accomplish this, we use the estimated shot factors
described above as covariates in a logistic regression:

P(Si = 1) = σ

(
β0 + β1D̂i + β2L̂Ri + β3Âi + β4D̂

2
i + β5L̂R

2
i

+β6Â
2
i + β7D̂i ∗ L̂Ri + β8D̂i ∗ Âi + β9L̂Ri ∗ Âi

)
(2)

with P(Si = 1) representing the probability shot Si is
a make, σ(x) = exp(x)/(1 + exp(x)), and D̂i , L̂Ri,
and Âi representing the estimated depth, left-right
distance, and entry angle of shot i, respectively. We’ve
included interaction terms to represent the interaction
between shot factors in determining make probabil-
ities (Marty and Lucey, 2017). We train this model
using 46,093 of the 50,916 threes from the 2014-
15 NBA season, removing shot trajectories that were
partially missing or that resulted in modeled shot tra-
jectories from (1) that were too far from the raw data.
We show the distribution of modeled probabilities in
relation to our three shot factors and the basket in
Figure 2.

3. The effect of defenders on shot trajectories

Here we present results based on shot trajectories
that help give some insight into how exactly defend-
ing shots lowers shooting percentages. Firstly, when
comparing the distributions of open and contested 3-
point shots, we find shots that are tightly contested
have a 56% larger variance in depth and a 38% larger
variance in left-right distance compared to open shots
(Figure 3). Contesting shots does not appear to intro-
duce bias into the left-right accuracy of shooters,
but does appear to cause shooters to bias their shots
shorter than what is optimal. This can be seen by the
shifted shot depth density plots in Figure 3. We also
find that a smaller nearest defender distance (NDD)
results in both higher entry angles and depths shorter
in the hoop (Figure 4a, 4b). Additionally, we find that
defenders above 6’8" seem to cause higher shot tra-
jectory angles when tightly contesting 3-point shots
(Figure 4a). Note in our dataset 47.5% of players are
6’8" or taller.

The same trend is not as pronounced between
defender heights and shot depths. Both our shot fac-
tors and those measured in Marty (2018) and Marty
and Lucey (2017) using the Noah shooting system
find that entry angles in the mid-40’s result in the
highest shooting percentage. Thus it appears that
defenders above 6’8" cause shots to deviate from
optimal angles when tightly defending. However,
shooting percentages are more consistent over a range
of entry angles compared to either left-right distance
or shot depth, indicating the effect that these defend-

(a) (b)

Fig. 2. Figure (a) shows the number of shots taken over a range of entry angles and their corresponding mean predicted shot-make probabilities
given by (2). Figure (b) shows the distribution of predicted shot-make probabilities over different values of shot depth and left-right accuracy
in relation to the basket. Note the shot-make probability legend applies to both figures.
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Fig. 3. The distribution of open and contested 3-point attempts
from the 2014-15 NBA season. Open and contested shots are
defined as attempts with a nearest defender distance (NDD) greater
than 6 feet and less than 4 feet, respectively. Here NDD is taken as
the distance of the closest defender to the shooter when the shot is
released. Depth and left-right measurements are given in feet.

ers have on shot angles relative to overall shooting
percentages may be minor. The more important effect
may be how NDD affects shot depths. As in Marty and
Lucey (2017), we find shot depths between 10" and
11" maximize 3P%. In our dataset, shots landing at 9"
depth are made at 60.1% of the time, while shots land-
ing at 10" depth are made 64.5% of the time. Thus,
some of the drop in expected shooting percentage
caused by contesting shots may be attributed to shoot-
ers biasing their shots shorter when confronted with
tight defense. When looking at if defenders affected

the left-right accuracy of shots, we do not find any
effect of defender angle on shot trajectories. Specif-
ically, defenders contesting from the left or the right
of the shooter do not appear to bias shots in either
direction.

4. Evaluating perimeter defenders and
shooters

As mentioned in Section 1, a player’s opponent
3P% is not a reliable perimeter defensive metric
because it is quite variable, having almost no year-to-
year correlation. Here we try to improve this metric
by utilizing the modeled shot-make probabilities cal-
culated in Section 2.2. To this end, we create 2 linear
regression models to evaluate each player’s defensive
ability when they are tagged as the nearest defender.
The first estimates the defensive impact of each player
using make/miss indicators as the response (model
1), essentially giving the magnitude of difference
between 3P% when the defender of interest is defend-
ing compared to a weighted average of the offensive
players’ 3P% over the season. The second model does
similar, except uses shot-make probabilities as the
response (model 2). These models have the form:

Yijk = β0 + αj + γk (3)

where Yijk is the ith shot taken by the jth player and
defended by the kth player. Yijk is either a binary
indicator in the case of model 1, or the modeled shot-

(a) (b)

Fig. 4. The entry angle (a) and shot depth (b) of all 3-point shot attempts during the 2014-15 season. Shot attempts are categorized by the
nearest defender’s distance (NDD) and the nearest defender’s height. In Figure (b) the dotted horizontal line indicates the shot depth at which
3P% is maximized.
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(a) (b)

Fig. 5. Figure (a) depicts the mean squared error (MSE) of the γk’s from (3) estimated using 10%, 20%, 30%, 40%, and 50% of the games in
the 2014-15 season. Coefficients using model 1 (Raw) and model 2 (Prob) are compared to coefficients estimated using the entire 2014-15
season data and make/miss responses. These coefficients correspond to the defensive impact of each player. Figure (b) depicts the same MSE
as (a) except the coefficients correspond to each shooter’s interaction with NDD, denoted as λj in (4).

make probability of shot i in the case of model 2.
Using sum-to-zero contrasts, β0 is the league average
3P% in model 1, and the league average shot-make
probability in model 2, and the αj’s are the estimated
differences within the sample between each player’s
3P% and the league average in the first model, and
estimated differences between each player’s mean
shot-make probability and the league average shot-
make probability in the second. Similarly, the γk’s
are the estimated impact of each defender on oppo-
nent 3P% in the first model, and estimated impact
of each defender on opponent three-point shot-make
probability in the second model. Note each param-
eter γk is zero except when player k is the nearest
defender.

If we consider the γk values estimated using binary
shot outcomes over the entire 2014-15 season as
each player’s true perimeter defensive impact, we
can show that using shot-make probabilities allows
us to estimate coefficients with less data than when
using make/miss responses (Figure 5a). To evaluate
these models we sample portions of the 2014-15 sea-
son 100 times, estimate γk using each model, and
take the average mean squared difference between
coefficients estimated using portions of the season
and our true coefficients estimated on the full sea-
son. We find the MSEs of coefficients estimated
using fewer than 50% of the games from the 2014-15
season are smaller when using shot-make proba-
bilities, and these gains are especially evident at
low sample sizes. We can also compare the predic-
tive ability of coefficients estimated using make/miss
outcomes and shot-make probabilities. We find that

when predicting defensive impact of players in the
second half of 2014-15 using shots from the first
half, coefficients estimated using shot-make proba-
bilities outperform those estimated with make/miss
outcomes in terms of MSE (0.0058 vs. 0.0091,
respectively) and consistency of player ranks (ρ =
0.17 vs. 0.025, respectively). Thus, we can use our
new metric to more accurately rank perimeter defend-
ers compared to opponent 3P% (Table 1). See Section
5 for a discussion of the rankings in Table 1.

We chose to model defender impact using a linear
regression in order to compare binary make/misses
to continuous shot-make probabilities. However, this
is not the most natural way to model binary response
variables. Though it’s difficult to compare the MSE
of coefficients, we can compare the predictive abil-
ity of models using make/misses as the response and
the more natural logistic regression. This model takes
the same form as (3), but include a logit link function
for the response. If we repeat our analysis compar-
ing the consistency of player ranks from the first
half of the 2014-15 season to the second half, we
find coefficients estimated using this model have a
rank correlation of 0.098, still below the 0.17 found
using a linear regression and shot-make probabilty
responses.

We can perform a similar analysis to measure how
effective shooters are at responding to defensive pres-
sure. We again create 2 linear regression models, this
time to evaluate how players’ shooting percentage
changes based on nearest defender distance. The first
model estimates the change in a player’s 3P% for
every foot change in the NDD, while the second esti-
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Table 1

Nearest Defender Impact on Shots

Rank Defender γk ∗ 100 Opp Prob Rank Defender γk ∗ 100 Opp Prob

1 Boris Diaw -6.71 30.0% 137 Derrick Williams 8.57 45.8%
2 Draymond Green -5.92 32.0% 136 Channing Frye 7.15 43.0%
3 Langston Galloway -5.25 30.6% 135 Vince Carter 5.96 41.7%
4 Patrick Beverley -4.55 31.9% 134 Kirk Hinrich 5.93 42.2%
5 Wesley Johnson -4.39 31.7% 133 Jameer Nelson 5.69 42.8%

The top and bottom perimeter defenders estimated via (3) using shot-make probabilities from (2). The γk ∗ 100 values represent the estimated
difference in 3-point shot-make probability percentage per 100 shots when the given player is the primary defender compared to a weighted
average of probabilities based on their opponent’s shooting skill. The Opp Prob column denotes the mean estimated shot-make probability
of shots where player k is the closest defender. Restricted to players who defended at least 100 three-point shots during 2014-15.

Table 2

Perimeter Shooter Resiliency to Shot Contests

Rank Shooter λj ∗ 100 Rank Shooter λj ∗ 100

1 Michel Carter-Williams 3.45 137 Aaron Brooks -2.54
2 Rasual Butler 3.39 136 Langston Galloway -2.41
3 Austin Rivers 2.86 135 Russell Westbrook -2.37
4 Kemba Walker 1.98 134 Nik Stauskas -2.35
5 Gerald Henderson 1.58 133 Rovert Covington -2.02

The top and bottom shooters resilient to defensive pressure estimated via (4) using shot-make probabilities. Values represent the estimated
change in each player’s 3-point shot-make probability per 100 shots for every 1 foot decrease in NDD relative to the league average. Restricted
to players who attempted at least 100 three-point shots during 2014-15.

mates the change in mean shot-make probability for
every foot change in NDD. These models have the
form:

Yij = β0 + αj + λj ∗ NDDij (4)

where Yij is the ith shot taken by the jth player, and
the αj’s are defined similarly to (3). The λj’s denote
the estimated interaction effect between each shooter
and the NDD. Thus the λj coefficients represent the
estimated change in mean 3P% (shot-make proba-
bility) for every one foot change in the NDD for
each shooter. Again we find that we can estimate
coefficients using less data (Figure 5b), coefficient
predictions from the first half of the season are more
accurate (MSEs of 0.0041 vs. 0.0050, respectively)
and that shooter rankings are more consistent when
using shot-make probabilities (ρ = 0.20 vs. 0.033,
respectively). Shooter rankings based on changes
in shot-make probability are presented in Table 2.
For example, Kemba Walker’s estimated mean three-
point shot-make probability decreases 1.98% points
less than the league average for every foot closer the
nearest defender is. We note that this metric is only
estimating how a player’s average shot-make proba-
bility changes with respect to defender distance. If a
player is already a poor shooter when wide-open, it
could be that the player’s average shot-make proba-

bility does not decrease much when facing pressure.
For example, Steph Curry has a shooter resiliency
coefficient of -0.00031, slightly worse than league
average, while Michael Carter-Williams has a league-
best coefficient of 0.0345. We estimate Steph Curry
to have a mean shot-make probability of 0.477 when
shooting with a NDD of greater than 6 feet, and a
mean shot-make probability of 0.388 when shooting
with a NDD of less than 4 feet. We estimate Michael
Carter-Williams to have corresponding shot-make
probabilities of 0.265 and 0.237, respectively. Thus
while we evaluate Steph Curry to be a far better 3-
point shooter, Carter-Williams’s average shot-make
probability is less affected by defensive pressure.

5. Discussion and conclusion

Substituting shot-make probabilities for binary
make/miss outcomes is an example of Rao-
Blackwellizing FG%. If we model shots as
Beta-Bernoulli random variables, shot-make prob-
abilities become a sufficient statistic for shooting
ability, and thus conditioning on these probabilities
will, by the Rao-Blackwell theorem, result in an
estimator with lower variance (Daly-Grafstein and
Bornn, 2019). The results presented in this paper
are just a few examples of the improvements Rao-



D. Daly-Grafstein and L. Bornn / Using in-game shot trajectories to better understand defensive impact 241

Blackwellization can give. With tracking data now
available in hockey, football, and soccer, trajectory
data can be leveraged to calculate similar goal/pass-
make probabilities that may result in improvements
similar to those seen in this paper.

The results presented in Section 4 illustrate the
improvements gained by using shot trajectories esti-
mated from the tracking data to evaluate defender
skill. We believe this work has opened up many areas
of future research. For example, nearest defender dis-
tance is not the most reliable way to quantify the
defensive pressure. It does not give us any indica-
tion of how the defender is oriented in relation to
the shooter, and also may tag a player that is not the
primary defender. It is also difficult to disentangle
individual perimeter defensive ability from team-
level effects when using this metric. For example,
Table 1 shows Langston Galloway as one of the top-
5 perimeter defenders. In our dataset Galloway is on
average 5.67 feet away from the shooter when desig-
nated the nearest defender, while the average shot has
a NDD of 6.13 feet. It’s not clear whether this differ-
ence is due to Galloway’s defensive ability, the type of
players he tends to guard, or whether it’s some team-
level effect that allows him to guard players more
closely than average. We may be able to improve our
defensive impact metric by using a more reliable mea-
sure of who the primary defender is (e.g. Franks et
al, 2015a), or by trying to incorporate the intensity
of the defensive contest (e.g. Csapo and Raab, 2014).
Furthermore, we defined a relatively simple model
in (3) that estimates a mean for each player’s defen-
sive impact. Conditioning on other covariates, such
as shot location, shooter position, or even NDD, may
give a more accurate estimation of players’ perime-
ter defensive ability. Finally, opponent FG%, and its
counterpart based on shot-make probabilities defined
in this paper, may themselves be flawed metrics in
evaluating perimeter defense. These metrics do not
take into account defenders who stopped opponents
from attempting a shot, forced their opponent to pass
or create a turnover, or even prevented them from
receiving the ball altogether. Combining the metrics
defined in this paper with those that account for how
defenders affect shot volumes and efficiency over the
course of an entire defensive possession (e.g. Franks
et al, 2015b) may give a fuller picture of a player’s
perimeter defensive ability.

In this paper we sought to provide new descriptions
for how defenders affect shots as well as construct
metrics that are better able to estimate perimeter
defender and shooter behavior. Following Marty and

Lucey (2017), we presented a variety of results
derived from shot trajectories. Similar to Marty and
Lucey (2017), we found that three-point probabilities
are highest at a depth of 10", and shots have a fairly
consistent make probability over a range of entry
angles. Additionally, we found that NDD increases
variability in shot depth, while also biasing shots
short. However, neither NDD nor defender angle
seemed to bias the left-right location of shot trajecto-
ries, with NDD only increasing its variability. Thus
it appears players are shooting with sub-optimal shot
depths when facing defensive pressure. This may give
players that train to correct this bias an opportunity to
improve their three-point shooting. Furthermore, our
new metrics based on make-probabilities decreased
the variation in estimation relative to their raw coun-
terparts. These metrics may allow coaches to more
accurately assess a player’s perimeter defense, as well
as indicate which outside shooters are most affected
by tight defensive pressure. Teams could use this
information to make better decisions about which
players to guard on the three-point line, or to bet-
ter evaluate their players’ shot selection based on
defensive pressure.
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