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ABSTRACT

The need to draw climate-related inferences from historical data makes understanding the biases and

errors in these data critical. While climate data are collected at point-level monitoring sites, they are often

postprocessed by averaging sites within a geographic area to align the data to a grid, easing analysis and

visualization. Although this aggregation generally provides reasonable estimates of the mean, its use can be

problematic for characterizing the full distribution of climate measures. Specifically, the process of averaging

point-level data up to grid level can lead to inconsistencies, particularly when the grid box is heterogeneous and

extremes are of interest. Point-level data are measured at individual points, while gridded data are the averaged

product of manymeasurements within a larger spatial area. Because of this aggregation, point-level and grid-level

distributions differ in many fundamental properties, such as their shape, skew, and tail behavior. This paper

highlights these differences and their effects on analyses pertaining to current climatological questions. Mathe-

matical relationships are derived to link the distributions of grid-level climate measures to the distributions of

point-level climate measures using the notion of effective sample size. Then, these relationships are leveraged to

propose a correction factor to use when modeling higher moments and extreme events.

1. Introduction

As the scientific community’s interest in climate-

related phenomena grows, the need to thoroughly

understand the underlying data is critical. Historical

climate data, such as instrumental temperature and

precipitation records, are quite noisy as a result of

changingmeasurementmethods and inconsistent spatial

and temporal coverage. To compensate for this noise,

various aggregation methods have been developed,

typically involving averaging measurements taken at

various stations within a particular geographical area.

Such averaging produces more consistent estimates of

the mean, but complicates our understanding of the true

distributional properties of these quantities. Therefore,

measuring, analyzing, and predicting various aspects

of climate requires constantly shifting between two

fundamentally different data types with inherently dif-

ferent properties.

Point-level data are measured at a specific geographic

location, while gridded data locally aggregate measure-

ments to create areal averages. Failure to distinguish

between these two data types can significantly affect the

scientific validity and real-world impact of an analysis. In

this paper, we discuss some of the statistical properties of

distributions of gridded and point-level data, develop

quantitative relationships connecting distributions of

these data types, and illustrate the utility of these re-

lationships by using them to predict climate extremes.

Many major climate data repositories follow the

convention of averaging measurements within spatial

areas and reporting those averages. These datasets form

a core pool of information from which many other sci-

entists begin their research. On a global scale, NASA’s

Goddard Institute for Space Studies, the National Cli-

matic Data Center (NCDC) of the National Oceanic

and Atmospheric Administation (NOAA), and a part-

nership between the Met Office Hadley Centre and

the University of East Anglia Climatic Research

Unit (CRU) all produce gridded products of various

climate measurements over time (Hansen et al. 2010;
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Lawrimore et al. 2011; Peterson and Vose 1997; Jones

et al. 2012). Similar datasets are produced for many re-

gions, such as those maintained by the U.S. Historical

Climatology Network (Menne et al. 2014). Climate

models also only output estimates of climate measures

at the level of areal regions. This means that many of the

issues stemming from transferring information from the

point level to the grid level that apply to historical data

are also relevant for downscaling climate models (Klein

Tank et al. 2009; Zwiers et al. 2013).

In developing gridded products, three main processing

techniques are used, generally referred to as the anom-

aly method, the reference station method, and the first

difference method (Peterson et al. 1998). The anomaly

method requires selecting a base period of years, finding

the average measurements for each station during that

period, calculating the difference (anomaly) between

the observed value and the base period value, and then

averaging these differences (Jones et al. 1986). The

reference station method extends the anomaly method

to allow for cases where there are an insufficient number

of measurements in the base period by allowingmultiple

stations to be combined to produce a full base period

time series (Hansen and Lebedeff 1987). The first dif-

ference method eliminates the use of a base period

entirely and instead gives the year-to-year differences in

the climate measures of interest (Peterson et al. 1998).

After processing the time series, the station records are

aggregated over a spatial area using either a simple

average or a weighting process that accounts for a

station’s proximity to other stations and/or to the center

of the grid box. Further complicating the interpretation

of these aggregates, the temporal values being averaged

are of varying data types. For example, temperature

measurements are usually reported as daily averages

while precipitation measurements are usually reported

as cumulative daily totals.

Despite the ubiquity of spatial averaging, its applica-

tion can be inappropriate in some circumstances. In

particular, some uses, such as predicting extreme events,

are concernedwith distributions at the level of individual

points. Aggregation elucidates the properties of the

distribution of the averages, but can fail to answer the

pertinent scientific question in these cases: how to de-

scribe and predict the climate behavior of the region

from which the spatial average was taken. This is es-

sentially a case of the classical ecological fallacy in that

conclusions about individual sites are incorrectly as-

sumed to have the same properties as the average of

a group of sites (Robinson 1950). Figure 1 illustrates this

effect by plotting kernel densities of the averagemonthly

temperature anomalies for a sample grid box alongside

kernel densities for the monthly temperature anomaly

observed at individual stations within the grid box. This

highlights how the distributions for individual points

tend to differ from the distributions of the average.

Failing to account for differences between individual

measurements and averages can have significant effects.

FIG. 1. (left) Kernel densities of the CRUmonthly temperature anomalies from 1950 to 2010 for each station and

for the gridbox average for the area spanning 108–158N, 108–158Wwhere (right) the stations aremapped in red on the

58 3 58 square grid box. The bandwidth parameter for the kernel densities is set to 0.15. The difference in the

individual stations’ densities and the density of the gridded average illustrates how point-level data are generally

more variable than gridded data and have heavier tails. This suggests that using different distributions to describe

point-level and gridded distributions would improve accuracy.
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For instance, changes in the frequency and intensity of

extreme events are often a concern of scientists, since

ostensibly they have more immediate impact than

changes in averages. However, this effect is heavily de-

pendent on how extreme events are defined. Extremes

in the areal average are neither the same as extremes at

individual points in a grid box nor are they the same as

extremes defined by taking the most extreme value at

any point within an area. All such quantities are of in-

terest, but in different situations. For example, to assess

the amount of precipitation in a catchment, areal aver-

ages should be used, but to assess extreme temperatures

observed at one’s home, point-level measurements are

needed. The difference between these values is not

trivial. For instance, in one study of the United States,

the number of extremes for point-level rain gauge data

and gridded reanalysis data were shown to differ by as

much as 2–3 times (Mannshardt-Shamseldin et al. 2010).

Further, there is interest in whether global warming is

being driven solely by a change in themean temperature

or by a change in the mean temperature and a change in

the variance of the temperature distribution (Schär et al.
2004; Rhines and Huybers 2013; Huntingford et al.

2013). This question depends on the entire distribution

of temperature, not just the average, so an answer can-

not be obtained without considering the effects of

gridding on the entire distribution. Nevertheless, the

analysis of data employing some formof spatial averaging

is often used for analyzing climate extremes (Efthymiadis

et al. 2011; Morak et al. 2013) and the variance in tem-

perature distributions (Hansen et al. 2012; Huntingford

et al. 2013; Schär et al. 2004).A central aimof this paper is

to facilitate investigation into these questions, and many

others like them, by clarifying the effects of spatial ag-

gregation on the distribution of climate measures.

This paper fits into the larger class of work on change

of support problems, which address inference for data

observed and analyzed on different scales. These scaling

problems were initially addressed within a range of field-

specific contexts such as agriculture (Fairfield Smith

1938), sociology (Robinson 1950), and epidemiology

(Morgenstern 1982). Tobler (1979) first introduced areal

interpolation in the statistics literature when he pro-

posed averaging intensity surfaces in such a way that

volume is preserved. Flowerdew andGreen (1989, 1994)

suggested more informative covariates for interpolation

and fitting via the expectation–maximization (EM) al-

gorithm. Recent work has proposed combining samples

of individual-level data with aggregate data to better

overcome the ecological fallacy (Wakefield and Lyons

2010). Hierarchical Bayesian approaches have also been

introduced (Mugglin and Carlin 1998; Banerjee et al.

2004). Thorough reviews of the change of support

literature can be found inGotway andYoung (2002) and

more recently Gelfand (2010).

In climate science, Osborn and Hulme (1997) first

developed a quantitative relationship between the var-

iance of the areal average and point-level data. Addi-

tional work has focused on quantifying the variance of

some gridded products, particularly temperature mea-

surements. For example, the current Hadley Centre/

CRU temperature (HadCRUT) dataset provides

uncertainty estimates for each grid box that are obtained

by summing estimates of several individual components

that have been identified as contributing to uncertainty

(Brohan et al. 2006). Uncertainty attributed to in-

complete spatial coverage has been explored by casting

it as a sampling problem using the method postulated by

Jones et al. (2001) (Brohan et al. 2006).

Our work adds to this literature by focusing on the

downscaling of distributional properties. In particular,

we provide a way to link the moments of grid-level

distributions with the moments of point-level distribu-

tions when intrasite correlation is fixed and known or

estimable. We also show how these relationships can be

used to connect point-level and gridded distributions for

the purpose of downscaling extremes. It is important to

note that we only propose linking distributions and

properties of distributions, not individual data values or

time series. As has been discussed for precipitation,

point-level data cannot be deterministically estimated

from grid-level data, because point-level data exhibit

stochastic noise that has been marginalized out of grid-

ded data (Maraun 2013; Wong et al. 2014). Similarly,

mapping a single point-level time series or data point

directly to the grid level is not possible, since grid-level

data need to account for all subgrid variability, in-

formation that is not fully available from a single station’s

time series or data point. Despite these limitations, our

method provides a simple correction for linking distribu-

tions at different scales, which is valuable in situations

where information is only available about a measure’s

distribution at the grid level or point level, but the distri-

butions of behaviors at the other level is of greater interest.

2. Moment relationships

a. Theoretical moments

1) SIMPLIFIED I.I.D. MODEL

To develop an understanding of how point-level and

grid-level measurements differ, we investigate how the

first four statistical moments of station and grid-level

distributions relate. We begin with a simplified model of

gridding and assume that the measurements for each

3498 JOURNAL OF CL IMATE VOLUME 28



station in any grid box are independent and identically

distributed (i.i.d.). We will eventually relax this as-

sumption to account for the stations’ spatial correlation,

but this assumption provides an intuitive way to un-

derstand the implications of not distinguishing between

the distributions of station and point-level data.

The first four moments provide a fairly thorough

characterization of a probability distribution. The first

and second moments (mean and variance) are used

regularly, while the third moment (skewness) and the

fourth moment (kurtosis) are used less often. Skewness

provides a measure of the symmetry of the distribution.

A symmetric distribution, such as the normal distribu-

tion, is defined to have a skewness of zero. A distribution

that has a longer left tail than right tail is referred to as

skewed left and has a negative skew value whereas

a distribution that has a longer right tail than left tail is

referred to as skewed right and has a positive skew

value. The fourth moment, kurtosis, is often referred to

as a measure of ‘‘peakedness.’’ For symmetric and

unimodal distributions, a distributionwith a high kurtosis

hasmoremass in the tails and lessmass in the center peak,

while a distribution with lower kurtosis has more mass in

the center peak and less mass in the tails. Various mea-

sures of these higher-order moments exist, but these

differences have little bearing on their interpretation. See

Joanes and Gill (1998) for further discussion.

Here we define skewness and kurtosis using cumu-

lants. Letting X be a random variable, Skew(X)5
k3(X)/[k2(X)]3/2 and Kurt(X)5 k4(X)/[k2(X)]2. The ith

cumulant, ki(X), is the coefficient of the power series

expansion of the cumulant generating function, gx(t),

which is the logarithm of the moment generating

function. Thus, gx(t)5 logE(etx)5�‘
i5 1kit

i/i!. Cumu-

lants satisfy several useful properties including that

ki(cX)5 ciki(X) and ki(X1Y)5ki(X)1 ki(Y), where

X and Y are random variables and c is any constant

(Hald 2000). This implies that �n
j5 1ki(Xj)5 nki(X1),

where Xj, j5 1, 2, . . . , n, is a random variable. Cumu-

lants are also used to relate the quantiles of any distri-

bution to the cumulative distribution function of a normal

distribution via a series expansion originally developed

by Thorvald Thiele in 1899 and later expanded on by

Cornish and Fisher and by Hill and Davis (Hald 2000;

Cornish and Fisher 1938; Hill and Davis 1968).

Using these moment definitions, properties of the

distributions of point-level and gridded data can be

expressed and related succinctly. Letting Xi represent

i.i.d. measurement i in an arbitrary grid box,X represent

the grid box average, and n represent the number of

stations, or sample size, in this grid box, relationships

can be derived relating each of the first four moments of

Xi and each of the first four moments of X solely as

a function of n. The relationships for the mean and

variance of independent random variables and their

averages are well known, specifically, E(X)5E(Xi) and

Var(X)5Var(Xi)/n. For distributions that have defined

cumulants, the skewness and kurtosis relationships are

less well studied, but can be derived as follows using the

properties of cumulants:

Skew(X)5

k3

�
1

n
�Xi

�
�
k2

�
1

n
�Xi

��3/25
�
1

n

�3

nk3(Xi)�
1

n

�2

nk2(Xi)

" #3/2

5
1ffiffiffi
n

p k3(Xi)

k2(Xi)
3/2

5
1ffiffiffi
n

p Skew(Xi) and (1)

Kurt(X)5

k4

�
1

n
�Xi

�
�
k2

�
1

n
�Xi

��25
�
1

n

�4

nk4(Xi)�
1

n

�2

nk2(Xi)

" #2

5
1

n

k4(Xi)

k2(Xi)
2
5

1

n
Kurt(Xi) . (2)

Table 1 summarizes these relationships. These equa-

tions illustrate that estimating point-level moments di-

rectly from averaged data results in estimates of

variance and kurtosis that are biased by a factor of 1/n

and an estimate of skewness that is biased by a factor of

1/
ffiffiffi
n

p
. In other words, although the mean of both dis-

tributions is the same, many of their other moments

differ. Because of this mischaracterization of the vari-

ance, skewness, and kurtosis, when using grid-level data

in place of point-level data, predictions of what pro-

portion of the data are above or below a particular

extreme threshold will be incorrect. Similarly, using

gridded data to assess whether the variance of tem-

perature distributions is changing over time may lead

to flawed conclusions, because changes in the number

TABLE 1. Mathematical definitions of the first four moments,

where Xi represents a single observation and X represents the

mean of a group of observations and the relationships between

these individual and averaged values.

Moment General Cumulant Relationship

Mean

(m)

E(X) k1 E(X)5E(Xi)

Variance

(s2)

E[(X2m)2] k2 Var(X)5
1

n
Var(Xi)

Skewness

(g1)

E

�
X2m

s

�3" #
k3

k3/22

Skew(X)5
1ffiffiffi
n

p Skew(Xi)

Kurtosis

(g2)

E[(X2m)4]

E[(X2m)2]2
k4

k22
Kurt(X)5

1

n
Kurt(Xi)
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of stations contributing data will cause changes in the

reported gridded variance regardless of the true variance’s

behavior. Analogous problems exist for skewness, kur-

tosis, and tail behavior.

Fortunately, these differences in higher-order mo-

ments can be accounted for under certain assumptions. In

fact, the relationships themselves suggest a solution.

Under the assumption of i.i.d. measurements, all of the

point-level moments can be directly represented as

a function of the gridded moments and the number of

stations within the grid box, n. So, it appears we can easily

convert between these two sets of moments as long as n is

known. To use a gridded moment to predict a point-level

moment, it seems we need only multiply the gridded

variance and kurtosis values by a factor of n and multiply

the skewness value by a factor of
ffiffiffi
n

p
. Likewise, to use

a point-level moment to predict a gridded moment, it

appears we need only divide the point-level moment by n

for variance and kurtosis and by
ffiffiffi
n

p
for skewness.

2) CORRELATION AND EFFECTIVE SAMPLE SIZE

However, in drawing this conclusion, we are assuming

that the point-level measurements are i.i.d., which is

generally not the case. Stations within a grid box tend to

be correlated, since weather events, such as heavy

rainfall or lower temperatures, affect entire regions

concurrently. Because of this spatial correlation, the n

samples within a grid box contain less information than

would be contained in n truly independent samples.

To address this issue, we instead use effective sample

size neff to replace n in our calculations. Effective sample

size is a common statistical measure that estimates how

many i.i.d. samples a correlated sample represents. It

was designed tomatch the standard error of themean, so

is only a reasonable, not a perfect, analog for the true

amount of information contained in measurements for

higher moments. However, as our later results demon-

strate, it performs adequately for all moments in this

context. Further methodological research could in-

vestigate effective sample size measures optimized for

higher moments.

To estimate the effective sample size in a grid box, we

must assume that the intrasite correlations are known or

estimable. We also typically assume that the spatial cor-

relations are constant over time, although this assumption

can be relaxed. As an example, if it is known when the

intrasite correlations changed, such as in the case of the

recorded movement of a monitoring site, the effective

sample size and corresponding adjustments can be calcu-

lated separately before and after the change, leading to

different adjusted distributions for each time period. Al-

ternatively, if the correlations are suspected to be fre-

quently changing, particularly in an unspecified way,

a sampling method can be used to identify the distribution

of the correlations and corresponding adjustments over

time. Applying each of these adjustments and combining

the results will give a distribution on the parameters that

reflects changes in spatial correlation over time. An ex-

ample of a reasonable samplingmethod, themoving block

bootstrap, will be discussed in the next section.

Given these assumptions, the following formula for

spatially correlated data is appropriate where xi is de-

fined to be the measurement of an individual station in

the grid box of interest at time i (Fortin and Dale 2005):

neff 5
n2

�
n

i51
�
n

j51

Cor(xi, xj)

. (3)

In our analysis, we use the empirical pairwise corre-

lation from the point-level data to estimate each intrasite

correlation. Although access to the full point-level data

would be unusual in many applications, we employ this

estimation technique because it requires minimal as-

sumptions and is broadly applicable. This ensures that

the moment relationships we establish in this paper are

not in some way confounded or dependent on a context-

specific estimation technique. In further work, the

method of estimating the correlation should be deter-

mined based on the data available and the particular

measurement of interest. In many cases, the empirical

correlation from historical or neighboring point-level

data can be used to impute the correlation of interest.

For somemeasures, research has also been conducted to

understand and quantify intrasite correlation (Hansen

and Lebedeff 1987; Jones et al. 1986). More broadly, it is

known that correlation among sites is affected by such

factors as a grid box’s location (Haylock et al. 2008),

orientation and weather patterns (Hansen and Lebedeff

1987), seasonality (Osborn and Hulme 1997), site den-

sity and homogeneity, and the type of climate measure

being assessed. Such information can be used to build

reasonable models for the correlations when surrogate

point-level data are not directly available. Ideal models

will vary depending on the measure of interest and what

covariate data are available, but will benefit from being

robust to outliers and potential deviations from model

assumptions. Since climate data tend to be noisy, methods

that are too sensitive to violations of assumptions or

outliers may result in inaccurate correlation estimates,

which will subsequently bias estimates of the effective

sample size and the corresponding adjusted moments.

3) UNCERTAINTY QUANTIFICATION

Regardless of how correlation is calculated, it will be

an estimated measure. This means that uncertainty in

3500 JOURNAL OF CL IMATE VOLUME 28



the correlation estimates will result in uncertainty in the

corresponding estimates of the effective sample sizes

and adjusted parameter estimates. Similarly, since the

locations and times wheremeasurements were taken are

samples, there is also uncertainty in the moments cal-

culated directly at the observed scale. One way to

quantify this uncertainty is to apply the well-known

bootstrap method. In bootstrapping, samples are taken

from the observed data with replacement to approxi-

mate the true sampling distribution. Here, because the

measurements are correlated over time, we apply the

moving block bootstrap, where random periods of time,

or blocks, are sampled. Specifically, we set the number

of blocks to N and the block length to b and let Xi,

i5 1, . . . , T, represent each measurement in the time

series. ThenN values are selected with equal probability

from the time series as starting values for blocks span-

ning,Xi, . . . , Xi1b21. This procedure givesN potentially

overlapping bootstrap times series. Subsequently, for

each bootstrap time series the effective sample size, and

sample moments are calculated independently. Com-

bining the results for all N blocks gives an approximate

sampling distribution for each measure, from which es-

timates of uncertainty such as the standard error can be

directly calculated (see, e.g., Kunsch 1989; Efron and

Tibshirani 1994). In Fig. 2, we illustrate this process by

finding and plotting the sampling distribution for the

moments of a sample grid box and the corresponding

estimated standard errors.

b. Empirical moments

1) DATA

The previous discussion has been largely theoretical,

leaving open the possibility that these relationships

could be overwhelmed by the considerable noise in real

FIG. 2. Approximate sampling distributions for the point-level mean, variance, skewness, and kurtosis for monthly

precipitation in the grid box spanning 308–358N, 1058–1108W obtained using the Global Historical Climate Network

precipitation dataset from 1950 to 2010 for stations with .10% missing values omitted. Distributions were ap-

proximated via moving block bootstrap sampling with 250 ninety-six-month periods sampled with replacement. For

each sampled time period, the effective sample size was calculated as described in section 2b and the first four grid-

level sample moments were estimated directly from the data. Then, the grid-level variance and kurtosis were mul-

tiplied by neff and the grid-level skewness was multiplied by
ffiffiffiffiffiffiffi
neff

p
to obtain point-level skewness for the sampled

period. The grid-level mean was left unchanged, since point-level and grid-level means are the same. Combining the

results for all sampled time periods, we obtain a point-level sampling distribution from which we can estimate the

uncertainty in our parameter estimates. Here, we report the standard error estimate for each parameter below its

sampling distribution. Uncertainty for the mean stems only from sampling variability, while the uncertainty in the

other moments is a function of both sampling variability and uncertainty in the effective sample size estimate.
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climate data. Therefore, we illustrate these relationships

with two well-known climate datasets. Throughout the

remainder of the paper, we consider the Climatic Re-

search Unit (CRU) temperature anomaly dataset ver-

sion 4 from 1950 to 2010 and the Global Historical

Climate Network (GHCN) total precipitation dataset

version 2 from 1950 to 2010 (Jones et al. 2012; Peterson

et al. 1998). Replicate analysis on GHCN temperature

anomaly data is included online as supplementary

material.

The CRU dataset is the land component of the

HadCRUT dataset produced by the Climatic Research

Unit at theUniversity of East Anglia in conjunctionwith

the Hadley Centre. Temperatures are expressed as

monthly anomalies from a base period of 1961–90 and

each station’s time series is reported along with a mean

for each 58 3 58 grid box. Both the point-level and

gridded data undergo extensive processing and quality

checks before their publication; see Jones et al. (2012)

for additional details. To ensure a relatively constant

sample size over the whole time period, stations that had

more than 10% missing values from 1950 to 2010 were

omitted. Because of this stipulation, for a small number

of grid boxes, the mean of all stations maintained does

not exactly equal the grid box mean reported by CRU.

Therefore, we limit our analysis to grid boxes for which

the calculated mean differs by less than 0.05 from the

grid box values reported byCRU, resulting in the omission

of 34 of the 185 otherwise eligible grid boxes. Although

perfect equality would be desirable, this is outweighed by

the value of examining a publically available gridded

product and the corresponding station data.

The GHCN total precipitation dataset is produced by

NOAA’s National Climatic Data Center. It gives the

total monthly precipitation measured at stations in the

Northern Hemisphere. The data were processed for

quality control and identification of duplicate records.

Additional information on themethods used is available

on the National Climatic Data Center website (Peterson

et al. 1998). Since there is no corresponding gridded

dataset, we have calculated the mean of all stations in

each 58 3 58 grid box to produce a spatially gridded

product. We have again limited the analysis to the years

1950–2010 and have omitted any station that is missing

more than 10% of measurements during this time

period.

2) OBSERVED RELATIONSHIPS

By considering the first four sample moments for

gridded and point-level data, the validity of the theo-

retical moment relationships can be verified empirically.

Toward that end, we use the monthly time series of each

grid box in the CRU data to calculate a sample mean,

sample variance, sample skewness, and sample kurtosis

for each grid box. Similarly, for each grid box in the

GHCN precipitation dataset, a series of monthly means

is obtained by averaging the measurements of each

station in each grid box for all months. The sample

mean, sample variance, sample skewness, and sample

kurtosis are then calculated from this time series. We

also find the same four sample moments for each in-

dividual station’s series ofmonthlymeans. In Fig. 3, each

grid box’s moments are plotted against their correspond-

ing station’s moments to illustrate how the moments dif-

fer for both datasets. In Fig. 4, each of the moments for

the gridded data are plotted against the corresponding

mean of the stations’ moments where the point-level

variance and kurtosis have been multiplied by a factor of

1/neff and the skewness has been multiplied by a factor

of 1/
ffiffiffiffiffiffiffi
neff

p
. To confirm the relationships in Table 1, these

points should form a line through y 5 x, indicating their

equality. For comparison, we also plot these same re-

lationships using the true sample size rather than the ef-

fective sample size.

For both the CRU and the GHCN data, the observed

results largely confirm our theoretical analysis. In Fig. 4,

the points relating grid-level and point-level means for

both the CRU and GHCN data form a straight line,

reflecting their equivalence. For the CRU data, the

points on the variance graph are generally below the line

y5 x, while the skewness and kurtosis points go roughly

through the line y5 x. On the other hand, for theGHCN

data, the points for variance, skewness, and kurtosis are

all below the line y 5 x. This suggests that the higher-

order moments of non-normally distributed data are

particularly affected by gridding.

Further, Fig. 4 shows that these differences are well

captured by the relationships in Table 1. For both

datasets, the grid-level and point-level data adjusted by

the effective sample size form a line through y 5 x,

suggesting equality. The gridded and point-level means

form a perfectly straight line for theGHCN temperature

data whereas for the CRU data the line is only roughly

straight. This distinction is attributable to the difference

in gridding method applied to the two datasets. For both

the GHCN and CRU data, the point-level variance

adjusted by effective sample size plotted against the

point-level variance forms a line through y5 xwhile the

point-level variance adjusted by the true sample size

yields a set of points consistently above y 5 x. This

demonstrates that the use of n as an adjustment factor

overcorrects for the effects of aggregation—an issue

largely corrected by the use of effective sample size. For

the remaining moments, the points relating the point-

level moments adjusted by the sample size and the grid

box moments are scattered above the line y 5 x, while
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the points relating the point-level moments adjusted

by the effective sample size and the grid box moments

form a straight line, again supporting the use of Eqs.

(1) and (2). There is somewhat more precision for

variance than for the skewness and kurtosis. In summary,

the theoretical relationships presented in Table 1,

when accompanied by the notion of effective sample

size, are reasonable mathematical representations of

FIG. 3. Plots of the sample moments of the gridded data vs the sample moments of the point-

level data for the (top) CRU temperature data and (bottom) GHCN precipitation data. Each

point represents one 58 3 58 grid box and the black line is y 5 x. The points for the CRU tem-

perature variance relationships and for the GHCN precipitation variance, skewness, and kurtosis

relationships are systematically below the line y 5 x, which suggests that the gridded values for

these moments differ from the point-level moments.
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FIG. 4. As in Fig. 3, but for the point-level data adjusted by factors of the sample size n in blue

and the effective sample size neff in green. Each point represents one 58 3 58 grid box and the

black line is y 5 x. Each point-level moment adjusted by the effective sample size plotted

against its corresponding gridded moment forms a roughly straight line, which supports the

relationships in Table 1.
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the observed relationships between point-level and

gridded moments.

3. Extremes

a. Methods

Having established relationships between gridded and

point-level moments, we now demonstrate their practical

importance by examining their effects on a problem

currently faced by climate scientists: how to predict ex-

treme events. Extremes remain less understood than av-

erages. This results primarily from the greater challenge

presented in understanding extremes than in un-

derstanding averages, since extremes, by definition,

rarely occur. Thus, extreme value theory often involves

augmenting the limited data on rare extreme events with

other information.A common approach is to estimate the

distribution of extremes by treating the individual max-

ima from small increments of time as random samples

from the true distribution of extremes. See Coles et al.

(2001) for further details on classic extreme value theory.

Here, we take a similar approach and avoid looking at

the extreme events alone, but instead focus on charac-

terizing the entire distribution of the data, subsequently

using that characterization to make a conservative esti-

mate of the occurrence of extreme events at the point

level. Single station time series are likely to have con-

siderable noise and might be inaccurate, but studying

extremes of the mathematical average will not accu-

rately explain point-level behavior. To balance these

concerns, we leverage the relationships between gridded

and point-level moments established in Table 1. Em-

pirical moments of the gridded data are used as initial

estimates for themoments of the point-level distribution

but are then multiplied by a factor of the effective

sample size as given in Table 1. This gives point-level

estimates that are neither biased nor adversely affected

by the noise in individual station records. These point-

level moments then can be used to define the point-level

distribution. As with finding method of moments esti-

mators, one only needs to find asmanymoments as there

are parameters in the distribution, after which one may

solve for the distributional parameters.

To demonstrate our method’s effectiveness, we predict

the percent of extremes thatwould be observed in each grid

box. Then, we compare this prediction with the percent of

extremes actually observed at the point-level. For com-

parison, we consider three adjustments of the variance:

1) Unadjusted: The grid-level estimates of mean and

variance are used directly for point-level data.

2) Adjusted by Var/n: The grid-level variance is divided

by n in order to estimate the point-level variance and

the grid-level mean is used directly to estimate the

point-level mean.

3) Adjusted by Var/neff: The grid-level variance is

divided by neff [Eq. (3)] in order to estimate the

point-level variance and the grid-level mean is used

directly to estimate the point-level mean.

Once these corrections have been applied, the

resulting adjusted moments are used to calculate the

parameters of the distribution. For the temperature

data, we elected to use a simple Gaussian model for the

distribution of the temperature anomalies at both the

station and grid box level. Similarly, we selected

a gamma distribution as the parametric model for the

precipitation data at both levels. Although more accu-

rate distributional models could certainly be obtained,

our use of simple models makes it easier to isolate the

improvement in prediction directly attributable to the

improvement in themoment estimates. Thus, our results

give a lower bound for the method’s effectiveness.

Practitioners in further applications could exploit prior

knowledge about the particular variable of interest or

could employ more extensive model evaluation tech-

niques to obtain greater accuracy. Since the underlying

distribution for temperature anomalies may have

heavier tails than can be modeled with a normal distri-

bution, our method provides a conservative estimate of

the expected number of extremes.

For each of these three methods, we calculate the

percent of the fitted distribution lying above or below

several thresholds. For demonstrative purposes, we have

arbitrarily selected the top and bottom 2.5% and 1% of

the anomaly data for all stations worldwide from 1950 to

2010 as the thresholds of interest for the CRU data and

have selected the top 20%, 10%, 5%, and 2.5% of all

data for the GHCN dataset. Any other thresholds of

scientific interest could just as easily have been selected.

We then report the difference in predicted versus

observed percent of extremes for each threshold and

adjustment. Results for temperature are displayed in

Table 2 and results for precipitation are displayed in

Table 3.

b. Results

As the values in Tables 2 and 3 indicate, for both

precipitation and temperature the difference between

the observed and predicted extremes is generally

smallest when the moments are adjusted using effective

sample size. However, the difference in the methods’

performance is greater for precipitation than for tem-

perature. This can likely be attributed to the different

underlying distributions of temperature and precipita-

tion. For data approximately following a Gaussian
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distribution, not adjusting the moments to the point

level will only result in an inaccurate variance estimate,

but for data approximately following a gamma distri-

bution inaccuracies in the higher moments will change

the shape of the distribution entirely.

In Fig. 5 for temperature and Fig. 6 for precipitation,

we display a matrix of plots. Each subfigure is a series of

boxplots arranged in order of increasing sample size

showing the difference between the percent observed

and percent predicted extremes. In general, the boxplots

are centered above zero for the unadjusted moments,

below zero for the moments adjusted by the true sample

size, and around zero for the moments adjusted by the

effective sample size. This reinforces the improvement

in accuracy obtained by downscaling the moments using

factors of the effective sample size. Additionally, dis-

playing the boxplots sorted by sample size illustrates

how the improvement in accuracy is not uniform across

all grid boxes. Plotted in red on each set of boxplots is

a line regressing the mean difference between observed

and predicted extremes on the sample size n. These lines

highlight that as n increases, the biasing effects of

gridding increase, so that for larger sample sizes the

underprediction of extremes is more significant than for

smaller sample sizes. As such, the effect of gridding is

noticeably affected by the number of stations used in

calculating the grid-level averages. If the true sample

size is used to adjust the variance, the overprediction of

extremes generally increases as the sample size in-

creases. On the other hand, using the effective sample

size to adjust the variance results in the difference be-

tween the predicted and observed percent of extremes

being near zero for all sample sizes. Overall, downscal-

ing moments by their effective sample size provides an

accurate way to predict extremes across grid boxes of all

sample sizes when the intrasite correlations are estima-

ble and constant. In addition, these regression lines re-

inforce the theoretical relationships in Table 1 by

highlighting that the key factor in relating moments of

grid-level distributions to moments of point-level dis-

tributions is effective sample size. We emphasize that

these relationships are applicable only for connecting

distributions as a whole, and should not be applied in an

effort to recreate individual time series.

4. Discussion

In this paper, we have demonstrated the importance

of understanding the effects of gridding when working

with spatially referenced climate data. As documented

in Table 1, all moments except the mean differ for point-

level and gridded distributions. To draw conclusions in

many circumstances, it must be recognized that aver-

aging fundamentally changes a measurement’s distri-

bution. The distribution of means is distinct from the

distribution of the individual data points that formed

those means. So, for all nontrivial analysis, one must

account for these differences.

In particular, this work highlights how using gridded

distributions to predict climate extremes is not a reliable

method for estimating point-level effects. The extent of

this inaccuracy is determined by the sample size from

which the grid box estimate was calculated, as well as the

heterogeneity within the grid box. Analysis of extremes

or higher-order moments from point-level distributions

will be inaccurate unless one is eliciting trends by com-

paring only point-level distributions to other point-level

distributions or gridded distributions to other gridded

distributions. Even then, there must be a roughly con-

sistent number of stations during all periods of compari-

son. Otherwise, even observed trends in higher-order

moments or extremes will be indistinguishable from

changes in the number of stations. Given the large

amount of missing data in most climatic datasets, this will

rarely be the case. Our method of downscaling extremes

by downscaling distributional moments helps to alleviate

TABLE 2. The average over all grid boxes of the observed percent

of CRU temperature data measurements above or below various

thresholds minus the percent of measurements predicted for each

grid box to be above or below these thresholds. The predictions are

obtained using a Gaussian distribution as described in section 3,

where the mean of the distribution is estimated directly from the

grid-level data. For the unadjusted prediction the grid-level esti-

mate of variance is used directly for point-level data; for the

adjusted by Var/n prediction, the grid-level variance is divided by

the sample size n in order to estimate the point-level variance; and

for the adjusted by Var/neff prediction, the grid-level variance is

divided by the effective sample size neff in order to estimate the

point-level variance.

Variance

adjustment

Thresholds

Lowest

2.5%

Lowest

5%

Highest

2.5%

Highest

5%

Unadjusted 0.60 0.33 0.27 0.16

Adjusted by Var/n 213.42 17.09 214.63 217.62

Adjusted by Var/neff 0.47 20.01 0.10 20.21

TABLE 3. As in Table 2, but for GHCN precipitation data

measurements. The predictions are obtained using a gamma dis-

tribution as described in section 3.

Variance

adjustment

Thresholds

Highest

20%

Highest

10%

Highest

5%

Highest

2.5%

Unadjusted 1.48 2.00 1.62 1.11

Adjusted by Var/n 3.07 21.96 23.83 24.22

Adjusted by Var/neff 0.38 0.16 0.17 0.21
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FIG. 5. Comparison of the difference in percent of predicted extremes vs percent of observed ex-

tremes for each grid box sorted by sample size for the CRU temperature data: (top)–(bottom) lowest

1% and 2.5%, and highest 1% and 2.5% thresholds. The predictions are obtained using a Gaussian

distribution as described in section 3, where the variance (left) has not been adjusted, (center) has

been adjusted by the sample size n, and (right) has been adjusted by the effective sample size neff.

Plotted in red on each set of boxplots is the regression line between the mean difference between

observed and predicted extremes and the sample size n. It shows that as sample size increases, the

biasing effects of gridding increase; so that for larger sample sizes, the underprediction of extremes is

more significant than for smaller sample sizes (left). Adjusting the variance by the true sample size

overcorrects this result and leads to an overprediction of extremes (center). Adjusting the variance by

the effective sample size gives the most accurate prediction (right).

1 MAY 2015 D IRECTOR AND BORNN 3507



FIG. 6. As in Fig. 5, but for the GHCN precipitation data with (top)–(bottom): highest 20%, 10%, 5%,

and 2.5% thresholds. These results largely mirror those observed in the CRU data except that the im-

provement in performance obtained by adjusting the variance by the effective sample size is greater for

the GHCN precipitation data than for the CRU temperature data and the trend for analysis using true

sample size is less clear.
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this concern by enabling better identification of point-

level variance and better predictions of extremes. Since

individual time series and data values cannot be de-

terministically related from the point level to the grid

level and vice versa, we achieve this result by relating the

distributions of climate measures at these two scales.

Further, this approach is completely distribution-free,

making no assumptions on the distributional character-

istics of the underlying data.

Another key conclusion from this work is the impor-

tance of sample size and correlation among station

measurements. For future gridded products, retaining

and publicizing information about the original sample

size and correlation among samples would be valuable

for accurate prediction. These results also point to an-

other way the uncertainty in the output of climate

models could be interpreted. Because of computational

constraints, these models typically only give a single

estimate for each grid box. To better understand the

uncertainty in these gridded predictions, a correspon-

dence could be developed between the information

contained in climate model output and the equivalent

number of measuring stations that would give the same

amount of information. Doing so would make connect-

ing what is predicted to happen in the average and what

is predicted to happen at the point level much easier.

Overall, this work has extended knowledge of the

statistical properties of gridded and point-level data by

relating the moments of each distribution type, and has

utilized these relationships to better predict climate

extremes from gridded data. Cognizance of these re-

lationships should enable better use of instrumental

climate data, ultimately enabling better understanding

of past and future climate trends.
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