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ABSTRACT

In X-ray binary star systems consisting of a compact object that accretes material from an orbiting secondary star,
there is no straightforward means to decide whether the compact object is a black hole or a neutron star. To assist in
this process, we develop a Bayesian statistical model that makes use of the fact that X-ray binary systems appear to
cluster based on their compact object type when viewed from a three-dimensional coordinate system derived from
X-ray spectral data where the first coordinate is the ratio of counts in the mid- to low-energy band (color 1), the
second coordinate is the ratio of counts in the high- to low-energy band (color 2), and the third coordinate is the
sum of counts in all three bands. We use this model to estimate the probabilities of an X-ray binary system
containing a black hole, non-pulsing neutron star, or pulsing neutron star. In particular, we utilize a latent variable
model in which the latent variables follow a Gaussian process prior distribution, and hence we are able to induce
the spatial correlation which we believe exists between systems of the same type. The utility of this approach is
demonstrated by the accurate prediction of system types using Rossi X-ray Timing Explorer All Sky Monitor data,
but it is not flawless. In particular, non-pulsing neutron systems containing “bursters” that are close to the boundary
demarcating systems containing black holes tend to be classified as black hole systems. As a byproduct of our
analyses, we provide the astronomer with the public R code which can be used to predict the compact object type
of XRBs given training data.
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1. INTRODUCTION

As our ability to acquire and archive data in all fields rapidly
grows, the tools for searching these data for pattern, order, and,
ultimately, meaning, need to grow commensurately. A critical
issue in this ongoing paradigm shift is that of multivariate data
with complex, hidden geometric structure. Color–color, or CC,
diagrams (which provide spectral information over different
energy ranges) and color-intensity, or CI, diagrams (which
show brightness variations for a given color) are common,
easily obtained measurements that have long been used to
classify X-ray binary types. White & Marshall (1984) plotted
all of the X-ray binaries (XRBs) observed by the HEAO-1
satellite on one CC plot; they found that systems containing
black holes clustered in one corner of their diagram and pulsars
clustered in an opposing corner. While they found significant
overlap of several classes of object in the center, they were able
to use this clustering to identify new BHC candidates. In
Vrtilek & Boroson (2013; hereafter VB13) we show that when
CC and CI are combined into a three-dimensional CCI plot,
different types of XRBs separate into complex but geome-
trically distinct volumes. VB13 model the volumes crudely by
computing a centroid and constructing an ellipsoid around the
centroid that contains 50% of all points while minimizing the
volume of the ellipsoid. We suggest that these diagrams
provide an easily used, model-independent way to separate
classes of systems, in particular systems containing black holes
from those containing neutron stars or systems that can produce
jets from those that cannot. As a next step toward under-
standing the physical mechanisms behind this separation of
compact object types, we have developed a probabilistic
(Bayesian) model which provides a supervised learning
approach: unknown classifications of XRBs are predicted

given known classifications. We provide the astronomer with
the R code which takes as input CCI data and outputs the
estimated probabilities of a system being a black hole, pulsar,
or non-pulsing X-ray binary system, in addition to standard
errors for these estimates. This software provides the
astronomer with more information than an off-the-shelf
machine learning solution because such a method typically
produces point estimates for the classes of the observations, as
opposed to an entire distribution for the classes of the
observations.
In Section 2, we describe the data used. In Section 3, we

specify the models we have used for estimating the
probabilities that the compact object type of an X-ray binary
system is a black hole, non-pulsing neutron star, or pulsar. In
Section 4, we present our results and their implications and we
conclude with a summary and future directions for this work in
Section 5.

2. DATA

Data on XRBs were obtained by the All Sky Monitor (ASM;
Levine et al. 1996) on board NASAʼs Rossi X-ray Timing
Explorer (RXTE) which operated continuously for nearly 15
years. Due to as-yet uncalibrated gain changes in the
instrument over the last two years of its life, we only use data
obtained within the first 13 years. The MIT ASM team provides
data in three energy bins (1.3–3.0; 3.0–5.0; 5.0–12.0 keV.)
sampled 4–8 times a day. We take one day averages and define
our colors as ratios of the mid- to low-energy range (C1) and
high- to low-energy range (C2). The sum of the three energy
bands is used to represent the intensity of the source; this value
is normalized by dividing the total counts by the average of
the top 1% of the data for any given source. These form a
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three-tuple consisting of the features, or background covariates
in statistical terms, for each of the observations. Note that since
these features are defined in terms of ratios of counts, they are
unitless. We also restrict ourselves to detections that have a
signal to noise of at least five, where signal to noise is defined
as the ratio of the number of counts in a particular bin to the
error on the number of counts. Figure 1 shows an example of a
CCI diagram constructed with three types of XRBs.

The classificaton of XRBs is not simple and different authors
tend to use different criteria. For our training set, we used 24
systems whose classifications are robust, that is, they are
consistent for numerous authors. In particular, we first
considered the classifications from the catalogs of Liu et al.
(2001, 2006). We then used Remillard & McClintock (2006)
identifications of confirmed black hole systems, Homan et al.
(2010) identifications of Z and Atoll sources, and Bildsten et al.
(1997) identifications of accreting pulsars. We excluded any of
the above types that were also identified as bursters as these
vary from author to author. This left us with nine systems
containing confirmed black holes (Cyg X−1, LMC X−1,
J1118+480, J1550−564, J1650−500, J1655−40, GX 339−4,
J1859+226, GRS 1915+105), nine confirmed pulsars (J0352
+309, J1901+03, J1947+300, J2030+375, J1538−522, Cen
X−3, Her X−1, SMC X−1, Vela X−1), and six non-pulsing
neutron star systems (Sco X−1, Cyg X−2, GX 17+2, GX 349
+2, GX 9+1, GX 9+9).

We test our model by predicting the compact object type of
three groups of systems. The first contains six systems whose
type is unambiguously classified: one confirmed black hole
(LMC X−3); one non-pulsing neutron star system (GX 5−1);
and four pulsing neutron star systems (1744−28, 0656−072,
0535+262, 0115+634). The second group of systems contain

stars that are classified as both burster and atoll sources
(Ser X−1, Aql X−1, 1916−053, 1608−522, 1254−69, and
0614+091), and hence possibly have ambiguous classifica-
tions. The third group of systems are sources that are either
unclassified or have multiple classifications across various
authors (1900−245, GX 3+1,1701−462, 1636−53, and
1700−37).
The training data set consists of 40,857 observations after the

preprocessing steps delineated above, of which 13098 come
from black hole systems, 25,366 come from non-pulsing
neutron star systems, and 2393 come from pulsing star systems.
The imbalance in observations between different compact star
types is due to the fact that brighter sources are more likely to
be detected than weak sources, yet the brightness of the sources
is not uniform among star systems. See Figure 2 comparing
brightness for various systems.
Because observations that are less bright are inherently more

likely to be below the signal-to-noise threshold which we
utilized in preprocessing, the data are not missing at random
(Little & Rubin 2002). The imbalance in observation types by
system is problematic because visual inspection of systems of
the same compact object type indicates substantial variability
between systems; hence, it is prudent to ensure that the true
variation of CCI values for each compact object is accurately
reflected in the training set. For instance, see Figure 3 for a
visualization of the variance between systems that are black
holes. Additionally, the model we employ for generating
multiple imputations, discussed in the next section, involves a
Gaussian process, and hence can be quite computationally
expensive to work with, generally scaling with computations
that take O N3( ) time, where N is the number of data points in
the data set. One solution to mitigate both of these issues is to
subsample the training set where the probability that a
particular observation is selected for inclusion in the smaller
training set is inversely proportional to the total number of
observations of its system in the entire training set. We sample
10% of the training data in this manner, without replacement, to
achieve a final training set consisting of 4085 observations, of
which 1486 come from black hole systems, 1465 come from
non-pulsing neutron star systems, and 1134 come from pulsing
neutron star systems. The histograms in Figure 4 show the
balance between various systems before and after subsampling.

3. MODELS AND ALGORITHM

Our approach estimates the probabilities that the compact
object type of an XRB is a black hole, non-pulsing neutron star,
or pulsar from posterior predictions of the compact object type
associated with CCI observations within the system. This
approach is similar to the multiple imputations methodology
developed in the context of survey analysis where the proper
handling of missing data is crucial for obtaining valid statistical
inferences, which is discussed in further detail by Rubin
(1996). In summary, the multiple draws from the predictive
distribution of compact object type allow the astronomer to
make a judgement about what the compact object type of a
given system is, and provide more information than a point
prediction. The salient property of this approach is that it takes
into account the inherent uncertainty in the prediction for each
individual observation, and a concrete illustration of the output
of this methodology is displayed in the Results section. For
more on applied Bayesian data analysis, see Gelman
et al. (2013).

Figure 1. Visualization of RXTE ASM data for 24 XRBs over 13 years
including only the s5 threshold values. Each individual point is the one day
average of the CCI data from one of the 24 systems. Black points are
observations from black hole XRB systems, red points are observations from
non-pulsing neutron star XRB systems, and blue points are observations from
pulsing neutron star XRB systems. The general pattern is that observations
from different system types separate geometrically in this CCI coordinate
system. (Note that since CCI coordinates are defined in terms of ratios of
counts, they are unitless.)
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The astronomerʼs probability model for the compact object
of observations from a particular system is a trinomial model
where the relevant estimands are the probabilities that the
compact object type is a black hole, non-pulsing neutron star,
or pulsar. The astronomerʼs objective is to estimate these
probabilities given the compact object type for all observations
within the system. Note that by employing a model which is
not a constant, the astronomer is implicitly modeling “imputer
noise”: in principle, the compact object type of a system should
be constant for all observations from that system, and so the
probability model employed by the astronomer is not
physically correct, but instead a pragmatic solution to allow

for the (inevitable) mistakes made by an imputer. Indeed, it
would be unrealistic to assume any probabilistic model to be
accurate all of the time.
Next, we describe the probabilistic (Bayesian) model used to

generate predictions for the compact object type of CCI
observations. We denote the training set as the 2-tuple
X Y,train train( ), where Xtrain is an Ntrain by three matrix consisting
of the three CCI values of the training points, and Ytrain is a
length Ntrain vector with the labels 1, 2, or 3 corresponding to
the compact object type of the system each individual data
point comes from: more precisely, 1 represents a black hole
system, 2 represents a non-pulsing neutron star system, and 3
represents a pulsing system. The test set is denoted by Xpred,
which is an Npred by three matrix that contains the CCI values
of observations from a single system for which we would like
to predict the compact object type, and we write Ypred to
indicate the labels for the observations from the system. The
model aims to predict the unknown vector Ypred, and from this
estimate the probability of the compact object type being a
black hole, pulsar or non-pulsar. From this point of view, Ypred
is the inferential object of interest and the remaining parameters
discussed are nuisance parameters, meaning that they exist for
the mathematics of the probabilistic model employed but are
not of ultimate inferential interest.
We introduce three independent latent variables for each

compact object type (black hole, non-pulsar, and pulsar) whose
marginal distribution is a Gaussian process with mean 0 and
covariance matrix Σ which has a squared exponential kernel, a
standard choice in the computer experiments and machine
learning literature, which is discussed in detail by Rasmussen
& Williams (2005), i.e.,

s fS = - -X Xexp 1ij i j
2

,. ,. 2
2 )( ∣ ( )

where Xi ,. denotes the ith row of the data matrix X for which the
first Ntrain rows are the rows of Xtrain and the rows from +N 1train

to +N Ntrain pred contain the rows of Xpred. Each latent variable
is tied to the compact object type through a multinomial logistic

Figure 2. Visualization of intensities for observations by each of the 24 systems within the training data set illustrating substantial variability. Systems 1–9 are black
hole systems, 10–15 are non-pulsing neutron star systems, and 16–24 are pulsing neutron star systems. This may explain the wide variability for the number of
observations of each system above the signal-to-noise threshold, since fainter measurements tend to be noisier.

Figure 3. Illustration of the wide variability in CCI data between different
systems that contain black holes, where each color represents data from a
different system.
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link function: the probability of a particular observation k to be
of a class l is proportional to a b+ Zexp l l kl[ ], where al and bl

have independent unit normal marginal distributions, and Z l., is
the latent variable drawn corresponding to type l. Note that

Î +Z l
N N

., train pred, where the first Ntrain elements correspond to
the training points, Z t., for short, and the remaining elements
correspond to the prediction test points, Z p., for short. The
parameter al is the mean offset for the latent Gaussian process
corresponding to the compact object type l, and the parameter
bl is indicative of the marginal effect that each latent variable
has on the probability of a data point to be of type l. It is
important to remember that since we are interested in predicting
the vector of compact object types Ypred, these additional
parameters introduced (al and bl) into our model are ultimately
marginalized out (i.e., forgotten) as nuisance parameters. The
likelihood of the observed labels given the latent variables and
remaining nuisance parameters takes a multinomial form:

a b a

b

=

+

=

⎤⎦

L Z Y

Z N
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where the normalizing constant Nk is given by

å a b= +
=

⎡⎣ ⎤⎦N Zexp . 3k
l

l l t
1

3

k l, ( )

For notational brevity, we denote the posterior distribution of
the vector Ypred, *p Y Y X X, ,pred train train pred( ∣ ) as *p Ypred( ). Then,
by the definition of conditional probability and marginalization,

we have the following integral representation for *p Ypred( ):

* ò a b
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Note that we purposely overload the p(.) notation and use the
dash symbol to represent “all other variables,” for less clutter.
This decomposition suggests the iterative algorithm described
in the appendix for sampling from the posterior distribution of
Ypred.

4. RESULTS

Here, we present our predictions for the compact object
types of those systems in the test set discussed in Section 2
using the model and algorithm discussed in Section 3. The
predicted class of an XRB is that which presents the maximum
estimated probability, an approach which can be justified from
a theoretical point of view because the posterior mode is a
Bayes’ estimator under a 0–1 loss function, which is a
reasonable loss function for a classification problem. The class
with the maximum estimated probability is mathematically
equivalent to the class with the maximum number of posterior
predictive draws for the class labels: i.e., the posterior
predictive mode.
Table 1 lists predictions for the six systems with

known classifications as well as probability estimates and
associated standard errors. Using this scheme, there are no

Figure 4. Comparison of the distribution of the number of observations by system in the training set before and after subsampling.

Table 1
Probability Estimates and Predictions for Compact Object Type of Previously Classified XRBs

System P BH( ) SE P (Nonpulsar) SE P(Pulsar) SE Prediction Actual Class

GX 5−1 0.0853 0.0519 0.8285 0.0756 0.0863 0.0259 NP NP
1744−28 0.2626 0.0978 0.1244 0.0570 0.6129 0.1072 P P
0656−072 0.0782 0.0565 0.0659 0.0472 0.856 0.0842 P P
0535+262 0.2164 0.0728 0.1312 0.0562 0.6525 0.0883 P P
0115+634 0.2179 0.0780 0.1425 0.0539 0.6396 0.1057 P P
LMC X−3 0.8585 0.0648 0.0762 0.0347 0.0654 0.0379 BH BH

Note. We demonstrate the estimated probabilities and predictions for six XRBs whose classifications have been established in the literature, along with their standard
errors. All of these systems are properly classified. The predicted class is that with the maximum estimated probability, which is equivalent to the mode of the posterior
predictive draws; see Section 4 for further discussion of the justification of this choice.
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misclassifications for this group of X-ray binary systems.
Additionally, in Table 2, we include the predictions and
probability estimates for “burster” non-pulsing systems, for
which there are a number of wrong predictions: four out of six
systems. In all cases, these systems are mistakenly thought to
contain black holes. Visual inspection of the data is consistent
with this result because the region these systems occupy
interferes with the region defined by systems containing black
holes: for instance, consider Figure 5 which compares a burster
system misclassified as a black hole system with a burster
system that is not misclassified, where there appears to be
significantly more overlap with the black hole system training
data for the misclassified system. It is also possible that some of
these systems are misclassified as non-pulsing neutron star
systems in the literature, yet significantly more scientific
investigation must be performed in order to verify this
possibility. Finally, in Table 3, we include predictions and
probability estimates for unclassified or ambiguously classified
XRB systems, of which notably GX 3+1 has a reasonably high
estimated probability of being a non-pulsing neutron star
system: 0.7674 with a standard error of 0.0326.

It is important to note that the entire distribution of posterior
predictive draws provides significantly more spatial informa-
tion than a point estimate for a compact system type. For
instance, consider the systems Ser X−1 and Aql X−1, the first
of which is a properly classified non-pulsing system, and the
second of which is one that is improperly classified as a black
hole. From Figure 6, there seems to be no question that Ser
X−1 is indeed a non-pulsing neutron star system since the
proportion of posterior predictive draws is 0.9341 with a
standard error of 0.0133. On the other hand, while Aql X−1 is
not properly classified, as is evident in Figure 7, we do see
some evidence for a non-pulsar signal from the 0.3093
estimated probability of being a non-pulsing system, with a
standard error of 0.0507.

5. SUMMARY AND FUTURE DIRECTIONS

The main objective of this work has been to develop a
probabilistic model for predicting the compact object type of
CCI observations from an XRB and to use the predictions
generated from this model to estimate the probabilities that the

Table 2
Probability Estimates and Predictions for Compact Object Type of “Burster” XRBs

System P BH( ) SE P (Nonpulsar) SE P(Pulsar) SE Prediction Actual Class

Ser X−1 0.0441 0.0081 0.9341 0.0133 0.0218 0.0077 NP NP
Aql X−1 0.5869 0.0692 0.3093 0.0507 0.1038 0.0411 BH NP
1916−053 0.7683 0.1328 0.1010 0.0810 0.1307 0.0765 BH NP
1608−522 0.4919 0.0678 0.3535 0.0492 0.1545 0.0310 BH NP
1254−69 0.2472 0.0231 0.6330 0.0246 0.1200 0.0181 NP NP
0614+091 0.7062 0.0560 0.1720 0.0441 0.1217 0.0392 BH NP

Note.We demonstrate the estimated probabilities and predictions for six XRBs classified as “bursters” along with their standard errors. Four of these six “bursters” are
improperly classified as black holes while the rest are correctly classified. The predicted class is that with the maximum estimated probability, which is equivalent to
the mode of the posterior predictive draws; see Section 4 for further discussion of the justification of this choice.

Figure 5. Left: example of a burster system in blue, Aql X−1, improperly classified as a black hole system by the algorithm with a comparison to black hole training
data in red. Right: example of a burster system in blue, Ser X−1, properly classified as a non-pulsing system by the algorithm with a comparison to the black hole
training data in red.
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compact object is a black hole, non-pulsing neutron star, or
pulsar. We have shown that the model we developed works
reasonably well for this purpose based on the accurate
classification of well known XRBs, but note that the model
seems to make mistakes when classifying bursters that are close

to the boundary between black hole systems and non-pulsars in
the CCI coordinate system. This suggests the benefit of further
investigation of these systems as well as a refinement of our
approach, including the data sampling, models, and algorithms
employed. It is also possible that some of these “burster” systems

Table 3
Probability Estimates and Predictions for Compact Object Type of Unclassified Or Ambiguously Classified XRBs

System P BH( ) SE P (Nonpulsar) SE P(Pulsar) SE Prediction

1900−245 0.4858 0.0989 0.2334 0.0736 0.2808 0.0846 BH
GX 3+1 0.0757 0.0284 0.7674 0.0326 0.1569 0.0210 NP
1701−462 0.5025 0.1107 0.2179 0.0642 0.2796 0.0698 BH
1700−37 0.1574 0.0650 0.1497 0.0503 0.6926 0.0749 P
1636−53 0.3619 0.0304 0.5411 0.0235 0.0969 0.0263 NP

Note. We demonstrate the estimated probabilities and predictions for five XRBs whose classifications are unknown or ambiguous, along with their standard errors.
The predicted class is that with the maximum estimated probability, which is equivalent to the mode of the posterior predictive draws; see Section 4 for further
discussion of the justification of this choice.

Figure 6. Example of a non-pulsing neutron star system Ser X−1 that is properly classified by the classifier. The left panel indicates all of the observations from Ser
X−1 and the associated predictions of each observation, with the mode taken to be the prediction. The histogram on the right illustrate the estimated probabilities of
Ser X−1 being of each of the three classes.

Figure 7. Example of a non-pulsing neutron star system Aql X−1 that is improperly classified by the classifier and mistaken for a black hole system. There appears to
be some signal for a non-pulsar system, however.
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are inappropriately classified, but further scientific investigation
is required before such a claim can be vigorously asserted.

In order to improve the predictive accuracy of our
classification scheme, we can extend the imputation model by
imposing a distribution on the Gaussian process parameters or
using a cross validation approach to fine tune these parameters.
There is a growing body of literature on Gaussian process
prediction which attempts to bypass the associated computa-
tional impediments, and so we would like to investigate these
methods and their potential application to this problem further,
e.g., with the INLA method introduced by Rue et al. (2009).
Additionally, the RXTE ASM data contain a large fraction of
missing data due to the signal-to-noise threshold we employ,
and so we may consider applying the framework of Little &
Rubin (2002) to model this missing data. The primary
advantages of this approach are that it utilizes a Bayesian
model for generating imputations, which is consistent with our
model for compact object prediction, and it may lead to more
plausible predictions for the unknown compact object types.
Additionally, we may want to consider different subsampling
schemes besides the one we employ to ensure that they do not
corrupt the inherent structure in the data set. Finally, in addition
to predictive accuracy, so as to make the model more
scientifically relevant, we may want to include physically
meaningful parameters; the inference of such parameters may
explain the scientific reasons for the separation of observations
into different regions by compact object type.

The CCI method, by definition, uses measurements of X-ray
intensity and color in two X-ray bands. This information will
generally not only reflect on the properties of the source but
also on the absorption of the intrinsic spectrum by the
interstellar medium. ISM absorption will clearly affect the
lowest energy band the most, and thus the soft color. However,
at higher column densities, the hard color will be affected as
well. We are developing a general method for the correction of
CCI plots given the sensitivity curve of an X-ray monitoring
telescope and likely models of the spectral shape (B. S.
Boroson et al. 2015, in preparation). The eROSITA telescope
developed at the Max Planck Institute for Extraterrestrial
Physics, due to be launched in 2016, has 20 times the
sensitivity of the ROSAT/ASM in the low-energy band and
will be particularly beneficial for studying the ISM (Merloni
et al. 2012).

We can extend our long-range study using data from past
and present large field of view X-ray instruments such as
MAXI (Matsouka et al. 2009), the HETE-WXM (Yoshida
et al. 1995), and BeppSAX-WFC (Boella et al. 1997). Current
and planned X-ray telescopes with high sensitivity, such as
Chandra (Weisskopf et al. 2002), XMM (Mason et al. 1995),
and eROSITA (Merloni et al. 2012), will enable us to apply our
methodology to XRBs of much lower luminosity.

Finally, we reiterate that the R code we have written to make
predictions for this analysis ought to be be applicable to other
CCI data sets quite easily, and so we have provided it for
public use.

We acknowledge the Harvard ICHASC for their helpful
feedback. Additionally, G.G. and S.D.V. acknowledge partial
support through a Smithsonian Institution CGPS grant to SDV.

Facility: RXTE.

APPENDIX
ALGORITHM DESCRIPTION

As noted in detail by Gelman et al. (2013), prediction in the
Bayesian paradigm essentially follows the following iterative
scheme: first, draw from the posterior distribution of model
parameters and latent variables through a Monte Carlo
simulation, and then draw from the predictive distribution of
interest, which in our case is that of Ypred, conditional on these
draws. Adapting this general strategy for our problem,
Equations (4) and (5) from Section 3 suggest the following
iterative algorithm for sampling from the posterior predictive
distribution for the compact object type.

1. Sample from the posterior distribution a bp Z , , ,train(
X X Y, ,train pred train∣ ) using elliptical slice sampling due to
the joint multivariate normal distribution of a b Z, , train( ).
The method of elliptical slice sampling was introduced by
Murray et al. (2010).

2. Sample the posterior latent variables at the prediction
points, Zpred, using the conditional multivariate normal
distribution of -p Z Z ,pred train( ∣ ), which has mean
S S- Zpred,train train,train

1
train and covariance matrix S -pred,pred

S S S-
pred,train train,train

1
train,pred due to fundamental properties

of conditional MVN distributions.3

3. Sample from Ypred from a multinomial distribution
conditional on the posterior latent draw of a bZ , ,pred

where, as mentioned previously, the probability of Ypredk

being of type l is proportional to a b+ Zexp l l predk l,
[ ].

Additionally, we set s = 12 and φ = 0.1.4

Elliptical slice sampling is a Monte Carlo algorithm
developed to simulate a posterior probability distribution where
the prior distribution is jointly multivariate normal, a condition
that holds in our model, as discussed in Section 3. As explained
by Murray et al. (2010), this is a scenario where traditional
Monte Carlo methods applied within a Bayesian context, such
as Gibbs sampling or Metropolis–Hastings, perform poorly.
Routines to implement elliptical slice sampling and draw from
the posterior distribution of Zpred and Ypred were written in the
R programming language using the Rcpp, RcppEigen, and
RcppArmadillo packages for the efficient inline implementa-
tions of linear algebraic routines in C++ (Bates & Eddelbuet-
tel 2013; Eddelbuettel 2013; Eddelbuettel & Sanderson 2014;
R Core Team 2015; Sklyar et al. 2015). Additional packages
used in the testing and development of this code were mvtnorm
and MASS (Venables & Ripley 2002; Genz et al. 2014). As
discussed by Murray et al. (2010), the computational impedi-
ments of elliptical slice sampling stem primarily from
determining the Cholesky decomposition of and inverting a
multivariate normal covariance matrix. RcppEigen and
RcppArmadillo provide efficient implementations for deter-
mining the Cholesky decomposition and performing
matrix inversion that can be conveniently included directly
within R code. This code, along with the RXTE ASM
data, is freely available at https://github.com/ggopalan/
XRay-Binary-Classification.

3 Note that Spred,train is the submatrix consisting of the rows +N 1train to
+N Npred train and columns 1 to Ntrain of Σ. The other submatrices of Σ used in

the previous formula are analogously defined.
4 More judicious ways of selecting these parameters are discussed in
Section 5.
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