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Robust structural health monitoring
under environmental and operational
uncertainty with switching state-space
autoregressive models
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Abstract
Existing methods for structural health monitoring are limited due to their sensitivity to changes in environmental and
operational conditions, which can obscure the indications of damage by introducing nonlinearities and other types of
noise into the structural response. In this article, we introduce a novel approach using state-space probability models to
infer the conditions underlying each time step, allowing the definition of a damage metric robust to environmental and
operational variation. We define algorithms for training and prediction, describe how the algorithm can be applied in
both the presence and absence of measurements for external conditions, and demonstrate the method’s performance
on data acquired from a laboratory structure that simulates the effects of damage and environmental and operational
variation on bridges.
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Introduction

A central challenge in structural health monitoring
(SHM) is distinguishing the effects of damage on struc-
tural behavior from the effects of environmental and
operational variation (EOV). Real-world structures are
exposed to constantly changing conditions, and there-
fore, methods robust to the effects of EOV must be
established in order for SHM to be practical. This arti-
cle introduces a state-space approach novel to SHM
that uses knowledge of the structure’s behavior under
different conditions to infer the conditions affecting the
structure and apply a model that is appropriate given
those conditions, thereby allowing the effects of dam-
age to be isolated from the effects of EOV.

SHM can be framed as a novelty detection problem
in which a model for healthy structural behavior is
established and new observations are classified as
healthy or damaged depending on whether or not they
continue to follow that model.1 An important compo-
nent of novelty detection is therefore the selection of fea-
tures that allow for discrimination between healthy and
damaged structures. It is common in SHM to construct
these features from a structure’s dynamic properties

(e.g. modal properties), and this is known as the
vibration-based approach to SHM.2–4 Autoregressive
(AR) time-series models provide a robust way to capture
the dynamic properties of structures, and their residuals
can be incorporated into a control chart framework as
features for damage detection.5,6 The AR model is use-
ful not only in the univariate case but can also be
applied to damage detection in multivariate time series,
such as those generated by sensor networks.7

The dynamic properties of structures are known to
be sensitive to variations in environmental and opera-
tional conditions.8–10 The task of engineering damage-
sensitive features robust to EOV is known as data nor-
malization. One approach to data normalization is to
preprocess the data and identify combinations of
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features invariant under EOV. Figueiredo et al.11 and
Cross et al.12 demonstrate how methods such as princi-
pal components analysis (PCA), nonlinear PCA (auto-
encoder neural networks), and cointegration can be
applied to exactly this purpose. An alternative to learn-
ing commonalities across different conditions is to
explicitly model the individual behaviors of the struc-
ture under different EOV. Farrar et al.13 describe an
approach in which a ‘‘reference table’’ of models is con-
structed to enumerate normal behavior under a range
of environmental and operational conditions; the
model residuals of the reference model that most closely
resemble the new observations are then used to evaluate
the health of the structure. When measurements of the
EOV are available, directly modeling the structure’s
dynamic properties as a function of the conditions can
be effective, as demonstrated by Worden et al.,14 who
use a decision tree regression model to explicitly model
how the dynamic properties of a bridge change with the
external temperature.

This article introduces a state-space model called the
switching vector autoregressive (SVAR) model as a
novel approach that extends this latter class of data
normalization methods. The SVAR model divides the
full range of EOV into distinct regimes of behavior,
learning from each discrete state an AR model that
describes that state’s expected behavior. This allows the
model to effectively normalize out the effects of EOV
and focus solely on damage, similar to the methods of
Farrar et al.13 and Worden et al.14 However, in con-
trast to these other methods, the SVAR model also
provides a probabilistic framework that allows us to
infer the state of the underlying system, making it prac-
tical for situations where measurements of the environ-
mental and operational variables affecting the structure
are unavailable. In addition to outlining basic inference
methods, we also detail inference methods for when
measurements of state variables are partially available,
as well as simplifications to inference that can be
applied when the state space is large. Our methodology
is evaluated upon experimental data collected across
multiple observation windows with distinct environ-
mental and operational conditions. We also include a
simulation study to demonstrate that although the
SVAR model assumes discrete states, its probabilistic
framework allows it to effectively model observations
even when EOV are changing continuously, due to the
SVAR model’s ability to combine the behaviors learned
from each constituent model when making new esti-
mates, weighting the influence of each state by its likeli-
hood. A similar state-space approach to SHM can be
found in Avendaño-Valencia and Fassois,15 though
without the transition dynamics modeled by the SVAR
approach.

We first describe the general AR approach to SHM
before introducing the SVAR model, detailing the algo-
rithms it requires for inference, prediction, and damage
detection. We then present a simulated example to illus-
trate how the method is applied before using data from
a laboratory test structure with simulated EOV to
demonstrate the advantages it offers over non-switching
AR models, the nonlinear autoregressive support vector
machine (AR-SVM) model, and minor PCA.

Background

The approach developed in this article has its founda-
tions in the vibration-based SHM approach of Fugate
et al.,6 who demonstrated how statistical process con-
trol could be applied to SHM by constructing control
charts from the residuals of AR models. In the follow-
ing section, we describe this methodology in full,
describing inference, prediction, and damage-detection
methods for the univariate AR model and the multi-
variate vector autoregressive (VAR) model in the con-
text of SHM.

AR models

Let fx1, x2, . . . , xTg be a univariate zero-mean time
series, representing the output of a single sensor. An
AR model of order p is a linear model

xt =
Xp

i = 1

aixt�i + et

for t � p + 1, where the errors fep + 1, . . . , eTg are i.i.d.
random variables with a N (0,s2) distribution, and
a1, . . . , ap are the AR coefficients. These parameters can
be estimated using either maximum likelihood or the
Yule–Walker method.16 Note that AR models assume
white noise, i.e., uncorrelated errors. In the presence of
colored noise, it may make sense to similarly model the
AR structure of the noise terms, in which case the class
of autoregressive-moving-average (ARMA) models
may be more applicable.16

Determining model order. It is important to carefully
select the order of AR models so as to prevent overfit-
ting. Several of the most common metrics for AR
model selection are the partial autocorrelation function
(PACF), model likelihood, the Akaike information cri-
terion (AIC), and the Bayesian information criterion
(BIC).16 The PACF looks at the autocorrelation of the
time series at different lags, and tries to select the sim-
plest model that includes all significantly correlated
lags. The model likelihood examines the closest fit
achievable at each order, and tries to identify the point
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after which additional parameters have only a marginal
effect on the fit, usually identified as a plateau in the
model likelihood as a function of order. The AIC and
BIC are penalized versions of the model likelihood that
approximate the predictive error of the model; the opti-
mal order under these metrics is therefore the model
that minimizes the AIC or BIC.17,18

While these metrics do not always agree with one
another on the appropriate model order, they reach
similar enough conclusions that the choice of metric
does not significantly affect the performance of AR
damage-detection methods.19 In this article, we use the
BIC method to select model order because it is less sub-
jective than the PACF or model likelihood, and tends
toward lower order models than AIC. The BIC is
defined as

BIC pð Þ= � 2 lnL pð Þ+ kp lnN

where L(p) is the model likelihood of an AR model of
order p, kp is the number of parameters of a model of
order p, and N is the number of data points observed.18

A plot demonstrating how BIC changes as a function
of model order is presented in Figure 1.

Damage detection. We detect damage by constructing
control charts from the residuals of an AR model fit to
the sensor output.6 Under the control chart framework,
damage detection is equivalent to identifying observa-
tions that are outliers to the process; these outliers are
defined as points exceeding thresholds set to quantiles
of the feature’s distribution, called control lines.20 A
typical control chart, known as a 99% control chart,
has control lines set at the 0:5% and 99:5% quantiles
of the residual’s distribution; these thresholds can be
adjusted for a specific SHM problem based on the rela-
tive tolerance for false-positive versus false-negative
indications of damage.

Vector AR models

Let fx1, . . . , xTg be a zero-mean multivariate time
series representing the output of a sensor network,
where each xt is a m31 vector of observations
(xt1, . . . , xtm), with xti representing the observation from
the ith sensor at time t, and with T representing the
total number of time steps and m the total number of
sensors. A VAR model of order p is then defined as

xt =
Xp

i = 1

Aixt�i + et

where the errors fep + 1, . . . , eTg, et 2 R, are i.i.d. ran-
dom variables with a MVN (0,Q) distribution, 0 is a
zero-vector of dimension m31, and Q is a m3m covar-
iance matrix. The AR coefficients A1, . . . ,Ap are m3m

matrices, where Ai½j, k� describes the dependence of xtj

on x(t�i)k ; note that if A1, . . . ,Ap and Q are all diagonal
matrices, then the m sensors are independent from one
another. The methods used for inference and model
selection for VAR models are the same as those used
for AR models. Examples of VAR models in the SHM
literature include Bodeux and Golinval,21 De Stefano
et al.,22 Bornn et al.,23 and Dzunic et al.24

VAR models are useful not only for damage detec-
tion but also damage localization, as the AR matrices
encode the dependence relationships between each
sensor.23,24

Damage detection. As with univariate AR models, the
residuals of VAR models can be used to construct con-
trol charts. However, since the residuals are now multi-
variate, they are first transformed to a univariate
statistic by standardizing the variance of each dimen-
sion and computing the sum of squares

zt = eT
t Q�1et

Since et is assumed multivariate normal, zt is distrib-
uted according to a x2

m distribution.25 The likelihood of
each observation can also be used as a damage statistic.

Methods

The SVAR model introduced in this article is an exam-
ple of a state-space model. Here, the signal evolves
according to one of several possible discrete regimes of
behavior between which the system alternates. Each
component state is associated with a model that defines
the behavior expected under that state; in the case of
the SVAR model, each component state is modeled by
a VAR model. This framework finds an intuitive appli-
cation in SHM under EOV, as we can group similar sets

Figure 1. Plot of the BIC as a function of model order for data
generated from an AR model (p = 3) fit with maximum
likelihood: xt = 0:4xt�1 + 0:3xt�2 + 0:15xt�3 + et, et;N (0, 1). The
dashed vertical line indicates where BIC reaches its minimum
value, which is at p = 3.
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of environmental and operational conditions into dis-
crete states, and then infer the likely value of future
observations by considering the behavior of the model
under each of these states. If the observed behavior of
the system then still deviates from expectation, we can
have the confidence that the observed novelty is due to
factors other than a benign change in the environmental
and operational conditions. Furthermore, while the
state space of an SVAR model is finite and discrete,
provided that the training states well represent the
range of possible variation in behavior, a trained SVAR
model can also successfully be applied to signals whose
behavior is changing continuously, as demonstrated in
the simulation study below.

A similar method was proposed by Farrar et al.13

using a ‘‘reference table’’ that specified different models
for different sets of environmental and operational con-
ditions. New observations would then be compared to
each of the models in the reference table; the residual
from the best fitting model would then be used as the
feature for damage detection. More recently, Worden
et al.14 developed a method using treed Gaussian pro-
cesses to model directly how the dynamic properties of
structures vary with the environmental and operational
conditions. The general concept is similar to that of the
state-space model, i.e., to normalize out the effects of
EOV by modeling the way dynamic properties depend
on environmental and operational conditions, though
that method differs from this article in that it is continu-
ous and requires direct measurement of external condi-
tions. Worden et al.14 model the relationship between
temperature and the fundamental frequencies of the
structure by learning a decision tree that partitions the
range of temperatures into regimes of similar behavior,
each of which is then fit with a separate Gaussian pro-
cess. This partitioning of the space is necessary as the
relationship between temperature and the dynamic
properties can differ greatly in different ranges, in par-
ticular above and below the freezing point.

The methodology described below builds on these
methods by providing a probabilistic framework that
specifies not only how observations are generated under
each state but also how the states transition between
one another, leading to predictions more robust than
those provided by the simple reference table approach.
In addition, the probabilistic structure provides a way
to infer the state underlying new observations, allowing
the model to provide accurate predictions even without
complete knowledge of the current environmental and
operational conditions, an important capability as
direct measurement of the sources of EOV is not always
available.

Avendaño-Valencia and Fassois15 have also pro-
posed a mixture model approach that shares elements
of the methodology introduced in this article, in

particular by separately modeling the vibration
response of the structure under different states. A key
motivation of their work was also in addressing the
challenges of SHM in contexts where direct measure-
ment of EOV was not possible. Our approach to dam-
age detection mainly differs in two areas: (1) Avendaño-
Valencia and Fassois use a more flexible class of models
for each component state than the VAR models used in
this article (they use linear parameter varying autoregres-
sive (LPV-AR) and functional series time-dependent
autoregressive (FS-TAR) models), and (2) their model
represents all healthy behavior under a single state, as
opposed to dividing healthy behavior into multiple states
as in the SVAR approach. Further work combining the
two approaches would be interesting, especially to see
whether using both more complex models and a richer
state space would lead to better damage-detection cap-
abilities than either individually.

SVAR models

Let fx1, . . . , xTg be a zero-mean multivariate time
series representing the output of a sensor network and
fs1, . . . , sTg be a hidden univariate discrete-valued time
series representing the environmental and operational
conditions, or state, of the structure at each time point,
where xt 2 R

m and st 2 f1, . . . ,Kg. Each state 1, . . . ,K

corresponds to a regime of environmental and opera-
tional conditions, where the full range of possible EOV
has been discretized into a finite number of bins. An
SVAR model is defined as a process where (1) the state
variables follow a Markov transition process and (2)
each observation xt is generated according to the AR
model corresponding to the current state st. In other
words, an SVAR model is a stochastic process gener-
ated as

st + 1;Categorical Z½st, 1�, . . . , Z½st, k�ð Þ

xt + 1jst + 1;MVN
Xp(st + 1)

i = 1

A
(st + 1)
i xt + 1�i,Q

(st + 1)

 !

where Z 2 R
k3k is a transition matrix with Z½i, j�=

P(st = jjst�1 = i) and the matrices A(k)
1 , . . . ,A(k)

p(k) ,Q
(k) are

the parameters of the VAR model for state k. We can
also write the model in the form

xt =
Xp(st )

i = 1

A
(st)
i xt�i + et

where fep + 1, . . . , eTg are i.i.d random variables with
et;MVN (0,Q(st)). A graphical representation of an
SVAR model of order 2 is presented in Figure 2. The
horizontal lines linking the state variables indicate that
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each state variable depends only on the value of the
preceding state variable, representing the Markov tran-
sition process; note that if the state dependency struc-
ture is believed to be more complex, we can construct
an extended space by including the previous 2, 3, .,
and so on state variables while maintaining the Markov
framework. The dependencies of each xt are more com-
plex, as xt depends not only on the previous two time
observations but also the current state st. A comprehen-
sive reference for inference and prediction with SVAR
models can be found in Murphy.26

A useful way to extend the SVAR model is to model
the state of the system as the composite of several differ-
ent factors; in the context of SHM, the factors would rep-
resent components of EOV such as temperature and live
load (e.g. traffic loading on a bridge). More formally, in
a factorized SVAR model, we describe the state as a mul-
tivariate variable st = (st1, . . . , stL) 2 R

L, where stl is the
observation of the lth factor at time t; the total number
of states is then K =

QL
l = 1 Kl, where Kl is the number of

levels of the lth factor. This provides a more intuitive rep-
resentation of the state as the Cartesian product of the
individual components of EOV. With the assumption
that the states transition independently, the transition
matrix can then be decomposed as

Z i, j½ � = P st = jjst�1 = ið Þ

=
QL
l = 1

P stl = jljs(t�1)l = ilð Þ

=
QL
l = 1

Zl il, jl½ �

where Zl 2 R
Kl3Kl is the transition matrix of the lth fac-

tor. This is convenient as it allows the transition process
of each factor to be considered separately, and reduces
the number of parameters in the model. For an example
of a factorized state-space model in practice, see Quinn
et al.,27 who apply a factorized state-space model to the
domain of patient health monitoring.

Inference. If the training data are labeled (i.e. there are
measurements of the environmental and operational

conditions), then the SVAR model parameters can be esti-
mated by isolating the observations corresponding to each
state and using the inference methods for VAR models
described earlier. The transition matrix Z can be estimated
by computing the empirical transition probabilities

Ẑ½i, j�= ni, j

ni

where ni, j is the number of times state i transitions to
state j, and ni is the number of times state i appears; if
the factorized representation is used, the factor transi-
tion matrices can be analogously estimated using the
counts for each factor level.

If the training data are unlabeled (i.e. the environ-
mental and operational conditions are unknown), then
the model parameters can be learned with expectation-
maximization (EM), an iterative algorithm that con-
verges on a local maximum of the likelihood.26 The first
step of the EM algorithm is to randomly initialize the
SVAR model parameters A(k)

i ,Q(k), Z to a set of values
u(0). The E-step then uses the initial estimates u(0) to
compute the state probabilities pt, k = P(st = kjx1:T , u

(0))
using the forward-backward algorithm (see the follow-
ing section). The pt, k are then fixed in the M-step so
that the maximum likelihood estimates of each of the
parameters can be computed

A(k)
i =

XT

t = 2

pt, kRt, t�1

 ! XT

t = 2

pt, kRt�1

 !�1

Q(k) =
1PT

t = 2 W i
t

 ! XT

t = 2

pt, kRt?Ai

XT

t = 2

pt, kRt, t�1

 !

Z i, j½ �=
PT

t = 2 P st�1 = i, st = jjx1:Tð ÞPT�1
t = 1 pt, i

where Rt = xt � xt and Rt, t�1 = xt � xt�1; if a factorized
representation is used, the factor transition matrices
can be analogously estimated using the computed prob-
abilities for each factor level. Note that the number of
states must be fixed before applying the EM algorithm;
model selection criteria like BIC can be applied to select
the number of states to use in the model.

Prediction. The expected value of xt under the SVAR
model is a weighted average of the expected value of xt

under each state-specific model

x̂t =E xt½ �

=
PK
k = 1

pt, kE xtjst = k½ �

=
PK
k = 1

pt, k x̂
(k)
t

=
PK
k = 1

pt, k

Pp(k)

i = 1

A(k)
i xt�i

" #

Figure 2. A graphical representation of a switching VAR model
of order 2. Each observation depends on both the
corresponding hidden state as well as the prior two
observations; each state only depends on the previous state.
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The residuals of the SVAR model are similarly a
weighted sum of the state-specific residuals

êt = xt � x̂t

= xt �
PK
j = 1

pt, jx̂
(j)
t

=
PK
j = 1

pt, j xt � x̂
(j)
t

h i

=
PK
i = 1

pt, je
(j)
t

(the equivalence of the second and third steps follows
because

P
j pt, j = 1 for each time t).

Often, the environmental and operational conditions
underlying new observations are not known; when this
is the case, the probabilities pt, k = P(st = kjx1:T ) can be
estimated using the forward-backward algorithm. The
forward-backward algorithm makes two passes over
the data: (1) recursively computing the partial-data
probabilities P(st = kjx1:t, u), which are then used for (2)
computing the full-data probabilities pt, k = P(st = kj
x1:T , u). Specifically, we first iterate forwards in time
starting at t = 1 and compute

P st = jjxt, x1:t�1ð Þ =
1

ct

Lt jð Þ
XK

i = 1

Z i, j½ �P st�1 = ijx1:t�1ð Þ

for each t 2 ½2, T �, where ct is a normalizing constant
and Lt(j) is the likelihood of the observation at time t
under state j; the probabilities P(s1 = j) are initialized as
P(s1 = j) = (1=c1)L1(j). The backward pass is then used
to compute the full-data probabilities by iterating back-
wards from t = T to t = 1

P st = jjx1:Tð Þ=
XK

j0 = 1

P(st = jjx1:t)Z½j, j0�
P(st + 1 = j0jx1:t)

P st + 1 = j0jx1:Tð Þ

Damage detection. As with the VAR model, a univariate
statistic for damage detection with an approximately
chi-square distribution can be constructed from the
model residuals. Note that the SVAR residuals are
distributed

et =
XK

j = 1

pt, je
(j)
t ;MVN 0,

XK

j = 1

p2
t, jQ

(j)

 !

and therefore standardized residuals can be constructed
as

zt = eT
t p2

t, 1Q(1) + � � � + p2
t,KQ(K)

� ��1

et

The likelihood of each prediction can also be used as
a damage statistic.

Computational complexity of prediction. The computational
complexity of prediction is dominated by the forward-
backward algorithm, which is an O(TK2) algorithm;
this implies that prediction is linear in the number of
observations, but quadratic in the number of states.
However, in most real-world long-term monitoring
cases, the number of different environmental and
operational conditions will be dwarfed by the length of
the time series, so the linear factor will dominate. The
linear cost could be further reduced by using sliding
windows, truncating the computation from the length
of the whole time series to only the size of the window.

Simulation study

The following example will illustrate how to fit an SVAR
model, demonstrate its ability to infer the environmental
and operational conditions of a system, and show its
advantages over non-switching VAR models. In addition,
the simulation study will demonstrate how the switching
model can use a discrete state space to effectively model
systems with continuously evolving environmental and
operational conditions by interpolating between the mod-
els for known states. Consider a time series fx1, . . . , x900g
where xt 2 R

2 with three different states

state 1 : A(1)
1 =

0:5 0

0 �0:5

� �
; Q(1) =

1 0:8

0:8 1

� �

state 2 : A(2)
1 =

0:3 0

0 �0:3

� �
; Q(2) =

1 0:8

0:8 1

� �

state 3 : A(3)
1 =

�0:5 0

0 0:5

� �
; Q(3) =

1 0:8

0:8 1

� �

Let the observations xt be generated as

xt = A
(st)
1 xt�1 + et; et;MVN 0,Q(st)

� �
where the hidden state variables st are

st =
1, t 2 ½1, 300�
2, t 2 ½301, 600�
3, t 2 ½601, 900�

8<
:

This will serve as the training data.
We then define a set of damaged states with the same

AR coefficients, but whose errors are decoupled. This is
intended to reflect subtle forms of damage that may not
significantly change the readings from individual sen-
sors, but rather affect the correlation between different
regions of the structure23
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state 4 : A(4)
1 =

0:5 0

0 �0:5

� �
; Q(4) =

1 0

0 1

� �

state 5 : A(5)
1 =

0:3 0

0 �0:3

� �
; Q(5) =

1 0

0 1

� �

state 6 : A(6)
1 =

�0:5 0

0 0:5

� �
; Q(6) =

1 0

0 1

� �

Now that we’ve defined a series of healthy and dam-
aged states, we construct a test time series to compare
the performance of the SVAR model to that of a base-
line using a VAR model. In order to simulate gradually
evolving environmental and operational conditions, we
construct the test time series such that it gradually shifts
between the six states. Specifically, the test time series
has observations fw1, . . . ,w500g with wt 2 R

2, gener-
ated as

wt = 1� atð ÞA(it)
1 + atA

(jt)
1

� �
wt�1 + et

where et;MVN (0, ((1� at)Q
(it) + atQ

(jt)))

(it, jt) =

(1, 2), t 2 ½1, 100�
(2, 3), t 2 ½101, 200�
(3, 4), t 2 ½201, 300�
(4, 5), t 2 ½301, 400�
(5, 6), t 2 ½401, 500�

8>>>><
>>>>:

and at = 0:01(t mod 100) so that at linearly interpolates
between each pair of states it and jt.

Next, we train the SVAR and VAR models and eval-
uate their ability to detect damage. The train and test
data are plotted in Figure 3. Since the training data are
labeled, we can train the SVAR model by splitting the
data along each state and learning the VAR parameters
individually using the Yule–Walker method. Since this
small simulated example lacks true transitions, we set
the transition matrix Z to

Z =
0:98 0:01 0:01

0:01 0:98 0:01

0:01 0:01 0:98

0
@

1
A

We then fit the model to the test data and construct
control charts from the standardized chi-square statis-
tics with control lines set at the 99% quantile of the x2

2

distribution; the results are plotted in Figure 4. Note
that the SVAR model has a stronger response to the
simulated damage than the VAR model, as can be
noted not only by the number of SVAR damage statis-
tics that exceed the control line but also by the greater
overall magnitude of the squared residuals for the
SVAR model on the damaged states. The receiver oper-
ating characteristic (ROC) curves for the SVAR and
VAR approaches are plotted in Figure 5 along with
their area under curve (AUC) scores, which reinforce
the stronger performance of the SVAR method.
Examining the state probabilities, also in Figure 4, we
observe that the state probabilities inferred for the

Figure 3. The train and test data for the simulated example. Each color in the train data represents a different state. For the test
data, the dashed line indicates the point at which the first damage state begins to be introduced, for example, where state 3 begins
to transition to state 4.

Liu et al. 7



healthy states track correctly with the gradual changes
in each state the test data, and that the state probabil-
ities inferred for the damaged states mirror those of the
undamaged states that share the same AR coefficients.
This implies that, as desired, the SVAR model was able
to correctly match up the damaged states in the test
data to the closest healthy states and from there recog-
nize that the signal was no longer behaving as expected.

Partial knowledge of environmental and operational
conditions

We have now discussed inference and prediction meth-
ods for the SVAR model under either complete knowl-
edge or complete lack of knowledge of the
environmental and operational conditions; however,
knowledge of the states is more often only partially
incomplete. For example, some factors may be actively

Figure 4. The 99% control charts for the residuals of the SVAR and VAR model in the simulated example, estimated state
probabilities for the SVAR model, and summary table enumerating the fraction of the time damage are flagged for in the healthy and
damaged data (e.g. the false- and true-positive rates, respectively). We define the ‘‘damaged’’ data as the time steps t 2 ½201, 500� in
the test data, as time t = 201 is when the first damaged state is introduced; in the residual plots, this time step is indicated by the
dashed line. Both the residual plots and the table support that the SVAR model has a stronger response to damage than the VAR
model at a similar false-positive rate, and that the SVAR model’s state probabilities correctly track the changing states even when the
decoupling is introduced.
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measured while others are unobserved, as in the case of
a vehicle whose temperature and speed are always
monitored, but whose payload is not. As another
example, there may be noisy measurements that imply
a probability distribution across states, or the availabil-
ity of measurements for particular factors may change
over time.

Let d(l)
1 , . . . , d(l)

T

� 	
, where d(l)

t = d(l)
t, 1, . . . , d(l)

t,K

� �
andP

j d(l)
t, j = 1, be a multivariate time series representing

our external knowledge of the factor l at each time t;
these reflect how our prior beliefs of the factor levels
change over time. Note that complete knowledge is
indicated by setting one of the d(l)

t, k = 1 and the rest to 0,
and complete lack of knowledge is indicated by uni-
formly setting d(l)

t, k = 1=Kl for each k.
Now let us reconsider the problem of computing the

state probabilities. First, the forward pass becomes

P st = jjxt, x1:t�1, d1:tð Þ=
1

ct

Lt jð Þ
XK

i = 1

P st = jjst�1 = i, d1:tð Þ½

P st�1x1:t�1, d1:t�1ð Þ�

Then, the backward pass becomes

P st = jjx1:T , d1:Tð Þ=

XK

j0 = 1

P(st = jjx1:t, d1:t)P(st + 1 = j0jst = j, d1:t)

P(st + 1 = j0jx1:t, d1:t)
P st + 1 = j0jx1:T , d1:Tð Þ


 �

The key difference is that the transition probabilities
are now dependent on the external knowledge

P st = jjst�1 = i, d1:tð Þ=
YL

l = 1

P st, l = jjs(t�1), l = i, d(l)
1:t

� �

=
1

ct

YL

l = 1

d(l)
t Z(l) i, j½ �

=
1

ct

YL

l = 1

d(l)
t, j

 !
Z i, j½ �

where ct is a normalization constant. We can character-
ize the influence of the external knowledge on the tran-
sition probabilities as a time-dependent transition
matrix Zt, such that

Zt i, j½ �= 1

ct

YL

l = 1

d(l)
t, j

 !
Z i, j½ �

This new time-dependent transition matrix can then
be inserted into the original forward-backward equations
to compute the new externally dependent state probabil-
ities. Note that in the case of complete knowledge of
the states, the time-dependent transition matrix becomes
a delta function, while in the no-knowledge case, the

time-dependent transition matrix is equivalent to the
original transition matrix, reflecting the desired impact
of external knowledge on prediction and inference.

Learning the SVAR parameters under partial knowl-
edge can be accomplished with the EM algorithm, the
only change being that the E-step should incorporate
the new time-dependent transition matrix into the com-
putation of the state probabilities.

Related methods

In the following section, we elaborate upon some of the
methods against which the SVAR model will be com-
pared in the experimental study.

AR-SVM

Bornn et al.25,28 introduce the AR-SVM model to
SHM, demonstrating how it can be used to model sys-
tems with a nonlinear dynamic response. The AR-SVM
model is an application of the methods of support vec-
tor regression (SVR) to time series. In SVR, the objec-
tive is to find a vector w such that all responses yi lie
within a margin e of the fitted values f (xi) = hw, xii+ b,
such that k wk2 is as small as possible. The optimiza-
tion and constraints are

minimize
1

2
k wk2 + C

XN

i = 1

h+
t + h�t

� �

Figure 5. The ROC curves for the SVAR and VAR methods,
comparing the false- and true-positive rates achieved by the two
approaches. Here, by ‘‘false-positive,’’ we mean a time step
where the residuals exceeded the threshold yet the underlying
true state was healthy, and by ‘‘true-positive,’’ we mean a time
step where the residuals exceeded the threshold and the
underlying true state was damaged.
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subject to
yi � hw, xii<e + h+

t

hw, xii � yi<e + h�t

�

where the slack variables h+
t and h�t allow for inexact

fits to the margin e, and C is a constant controlling the
trade-off between the size of w and the allowance of
deviations beyond e. When applied to time series, the
(yi, xi) correspond to the pairs (xt, xt�p:t�1), where p is
the order of the model. Bornn et al.25 apply the AR-
SVM to a sensor network by fitting a separate AR-
SVM model to each sensor. The residuals were then
standardized to construct approximately x2

m-distributed
statistics that could be used in control charts for dam-
age detection.

Minor PCA

Cross et al.12 demonstrate several methods for identifying
linear combinations of features robust to EOV, most pro-
minently minor PCA and cointegration. In the following
study, we focus on minor PCA, as cointegration requires
larger data sets than available in this experiment.

PCA is a statistical tool that identifies a basis spanning
the data whose first component has the greatest variance
possible across the data, and whose each subsequent
component has the greatest variance possible across the
subspace of the data orthogonal to the preceding compo-
nents. Therefore, by transforming the data along the last
few principal components, new features can be con-
structed that have lower variance across the different
EOV; this method is also known as minor PCA.

Our implementation of minor PCA follows the
methods of Cross et al.12 First, in order to construct
the features, the training and test sets were divided into

100-point samples (e.g. such that there were 160 total
samples in the training set and 40 in each test set).
Then, the Fourier transform of each sample was com-
puted and spectral lines 16 through 30 extracted to con-
struct the data matrix.

Since minor PCA is only developed in a univariate
context in Cross et al.,12 we constrain ourselves to using
the data obtained from the accelerometer on the third
floor, the sensor exhibiting the most sensitivity to dam-
age. We then apply PCA to the 160315 data matrix
extracted from the training data and compute the five
least variable components; the training and test sets are
then transformed along these components. The distance
of the features corresponding to each chunk in the test
set from the mean of the training features is computed
to identify damage, using Mahalanobis squared dis-
tance as a measure of discordance

D xð Þ = x� �xð ÞTS�1 x� �xð Þ

where �x is the mean of the (transformed) features of
the training data and S is the sample covariance matrix.
A threshold for damage is determined using a Monte
Carlo method and any point in the test set exceeding
the distance threshold is flagged for damage.12

Experiment

Test structure

The performance of each model was evaluated on data
from a laboratory test structure, depicted in Figure 6.
The structure is a three-story building made of four
30.5 3 30.5 3 2.5 cm aluminum plates held up by four

Figure 6. Diagram of the experimental structure.
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17.7 3 2.5 3 0.6 cm aluminum columns each. The
building is attached at its base to a shaker that agitates
the structure horizontally. Four accelerometers with
sensitivities of 1000 mV/g were mounted at the center
of each plate to record the response of the structure to
the excitation of the shaker. Damage was simulated
through the impact of a 15.0 3 2.5 3 2.5 cm column
suspended from the ceiling of the top floor with a bum-
per on the floor which could be adjusted to modify the
extent of impact. Different environmental and opera-
tional conditions were simulated by adding weights to
various floors and by adjusting the stiffness (equiva-
lently, the thickness) of various columns, as described
in Figueiredo and Flynn.29 Each simulated time series
is composed of 8192 data points sampled at 3.125 ms
intervals, and the structure was excited by random exci-
tation in the range of 20–150 Hz. The different environ-
mental and operational states simulated in the data set
are summarized in Table 1.

This test structure is designed to be a laboratory-
scale way to capture the effects of environmental and
operational variability that one of the co-authors
directly measured during field tests of two in situ high-
way bridges.9,30 The varying mass is intended to simu-
late the changes in the bridges’ dynamic response
properties caused by the mass loading of vehicles, and
the changes in stiffness represented by varying the col-
umn thicknesses are intended to simulate the effects of
day–night temperature differentials that were observed
in the bridge study reported in Farrar et al.9 The
changes in mass and column thicknesses are designed

to produce approximately the same changes in the first
mode frequency of the test structure as observed on the
in situ bridges resulting from varying traffic loads or
thermal conditions (both of which produced an approx-
imately 5% change in the first mode frequency of the
respective structures). The actual bridge data were not
used because traffic was not allowed on the I-40 bridge
once damage was introduced and damage was not
introduced into the Alamosa Canyon Bridge. Although
the structure only offers an idealization of these envi-
ronmental and operational effects, it provides a reason-
able approximation to the variability associated with
the actual measured dynamic response of in situ struc-
tures coupled with simulated damage scenarios.
Furthermore, this structure lets researchers simulate
many combinations of idealized sources of variability
and damage, data which are difficult to obtain from in
situ structures.

Randomization study

A randomization study was used to evaluate and com-
pare the performance of four different damage detec-
tion and data normalization methods on the data
obtained from the laboratory structure: (1) the VAR
model, (2) the AR-SVM model, (3) the SVAR model,
and (4) minor PCA.

Taking the perspective of SHM as a novelty detec-
tion problem, there are two different types of novelty
that a data normalization algorithm can encounter:
damage in the structure, or an unfamiliar set of

Table 1. A description of the different states present in the data set. Gap refers to the distance between the bumper and column
used to simulate damage; mass (location) refers to the size of the weight and where the weight was placed. Stiffness reduction refers
to halving the thickness of the listed column. Omissions imply default conditions: no gap, no mass, normal stiffness.

Dataset

Index Gap Mass (base) Mass (first floor) Stiffness

1 – – – –
2 – 1.2 kg – –
3 – – 1.2 kg –
4 – – – 1BD
5 – – – 1AD and 1BD
6 – – – 2BD
7 – – – 2AD and 2BD
8 – – – 3AD
9 – – – 3AD and 3BD
10 0.20 mm – – –
11 0.15 mm – – –
12 0.13 mm – – –
13 0.10 mm – – –
14 0.05 mm – – –
15 0.20 mm 1.2 kg – –
16 0.20 mm – 1.2 kg –
17 0.10 mm – 1.2 kg –
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environmental and operational conditions. In order to
study these two sources of novelty separately, we con-
ducted two variations of the randomization study, one
in which the models were evaluated upon a damaged
state (e.g. one of states 10–17) with EOV matched to
the states in the training set, and one in which the novel
states were healthy states (e.g. one of states 1–9) not
present in the training set. In this way, we ensured that
in each study, only one type of novelty was present. We
henceforth refer to these two variations of the randomi-
zation study as the matched study and novel EOV study,
respectively. The states selected for train and test in
each iteration of the each study are detailed in Tables 2
and 3 in Appendix 1.

In each iteration of the randomization study, four
random healthy states and one random novel state
were selected. A 16,000-point training set was then con-
structed by concatenating 4000-point segments of each
selected healthy state. After fitting the models to the
training set, the models were applied to two different
test sets: (1) a 4000-point segment from a second reali-
zation of one of the selected healthy states and (2) a
4000-point segment from a novel state. The fraction of
points flagged as novel by each model on each test set
was then computed, providing a measure of the false-
and true-positive rates of each algorithm. An example
of the training and test data constructed for the model
is plotted in Figure 7.

We now present a more detailed illustration of how
the experiments were conducted, using the experiment
described by the first row of Table 2 as an example.
For this iteration, the signal for training the model was
constructed by concatenating 4000-point segments
from realizations of states 1, 7, 6, and 9, in that order
(specifically using time steps t 2 ½2001, 6000� from the
realization of each state). Then, the healthy segment of

the test signal was constructed by extracting time steps
t 2 ½2001, 6000� from a second realization of one of the
training states—in this example, state 1. Since this was
an iteration of the matched study, the novel test state was
randomly selected from the subset of damaged states
whose environmental and operational condition matched
at least one of the healthy states, and in this example,
state 10 was selected, whose conditions match those of
state 1 (for the novel EOV study, the novel segment
would have been selected from the complement of the
healthy states used in training, for example, one of states
2–5 or 8). The novel segment of the test signal was then
constructed by extracting time steps t 2 ½2001, 6000�
from a realization of state 10, and the complete test data
constructed by concatenating the novel segment to the
healthy segment. Each method was then trained and
evaluated accordingly on the train and test data.

An important note is that the damage-detection
algorithms for the SVAR, VAR, and AR-SVM meth-
ods were slightly modified for the randomization study.
In this study, we used the average damage statistic
across 100 time-step segments rather than the damage
statistic at each time step. This provided the SVAR,
VAR, and AR-SVM methods a coarser resolution, and
in particular allowed for correct comparison between
those methods with the PCA method, which required
chunking the data into 100 time step segments for accu-
rate spectral analysis. The damage statistics used are
still the ones outlined in the methodology section
above: marginal likelihood for the SVAR and VAR
methods, the chi-square damage statistic for the AR-
SVM method, and discordance for the PCA method.

Results

The true-positive rates for each study (using 99% con-
trol lines) are summarized in Figure 8, and ROC curves

Figure 7. A plot of the time series from a sample iteration of the randomization study; each row represents a different sensor. The
training data are composed of samples from states 1, 9, 8, and 6, in that order; the healthy test data are a different sample from state
8; the novel test data are a sample from state 10. The different colors in the training data sample demarcate the different states.
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Figure 8. Mean true-positive rate for states in the matched study (above) and novel EOV study (below), i.e., the percentage of time
steps flagged in the novel test case in each study. Note that sometimes when the true-positive rate is near 100%, as in states 5, 7, 9,
13, 14, and 15, the SVAR marker is occluded by the VAR marker.

Figure 9. Matched study: Comparison of ROC curves obtained with the SVAR, VAR, AR-SVM, and minor PCA methods in the
matched study. In each case, the models are trained on healthy states, then tested on a replication of one of the training states and a
novel, damaged state whose environmental and operational conditions match one of the training states.
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and ROC-AUC are presented in Figures 9 and 10.
There are detailed summaries of each iteration of the
randomization study in Tables 2 and 3 of Appendix 1.

Matched study. In the matched study, the SVAR method
consistently yields the highest AUC and true-positive
rates, though with other methods performing similarly
at the higher damage levels. All methods tend to per-
form better as the severity of damage increases.

The high performance of the VAR and SVAR meth-
ods suggests that AR methods in general are well suited
for identifying damage of this type. The left-heavy
shape of many of the ROC curves of the AR models
suggests that they yielded large damage statistics when-
ever there was an impact, but otherwise fit the data
closely. This is as expected, since the behavior of the
structure in these damaged states only deviates at the
impacts. Relatedly, the PCA method’s slightly worse
performance may be attributable to it having less reso-
lution by operating in the frequency domain, and there-
fore not reacting as severely as the AR methods.

The state probability estimates of the SVAR model
for state 10 in one of the matched study iterations are
plotted in Figure 11; note that the SVAR method cor-
rectly identifies the EOV underlying state 10 to be asso-
ciated with state 1. The ability to identify the
underlying state with great fidelity suggests that the
gain in model performance of the SVAR over the VAR
method can be explained by the fact that the SVAR
method learns a separate model for each state it
encounters in training. In contrast to other methods,
which must fit a single model across multiple states,
this allows the SVAR model to maintain ‘‘stricter
expectations’’ for the behaviors it observes, increasing
its relative sensitivity to novelty.

Novel EOV study. In the novel EOV study, the SVAR
model again yields the highest AUC and true-positive
rates. Note that the SVAR model has higher AUC
scores in this study than in the matched study; this may
be attributable to the sparsity of impacts in the dam-
aged states, for example, while the novelty in the

Figure 10. Novel EOV study: Comparison of ROC curves obtained with the SVAR, VAR, AR-SVM, and minor PCA methods in the
novel study. In each case, the models are trained on healthy states, then tested on a replication of one of the training states and a
novel, undamaged state with distinct environmental and operational conditions.
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matched study is intermittent, the novelty in novel EOV
study is continuous, perhaps leading to a higher rate of
true positives.

The same ‘‘stricter expectations’’ explanation may
explain the SVAR model’s performance in the novel
EOV study, as the specificity with which the SVAR
model learns to recognize each state means that new
conditions that do not resemble any of the states upon
which the model was trained will be identified as novel.
In Figure 12, we provide an example of the SVAR
model estimating state probabilities for an iteration of
the novel EOV study; note how on the novel test case
the model does not settle on a confident belief in any of
the four training states, in contrast to the example
shown in the matched study.

One way to interpret these results is that there is a
limit to the robustness of the ability of the SVAR model
to average between the behavior of its known states to
approximate the behavior of new states, and therefore
that care must be taken in arranging comprehensive
training data for the SVAR approach. In contrast, since
the other methods have learned to expect greater

variance in the behavior of healthy structures, they are
less sensitive to the appearance of a new state.

Conclusion

This article proposes a novel method for vibration-
based damage detection robust to EOV that unites the
AR novelty detection framework with switching state-
space models. In contrast with other data normaliza-
tion methods, the SVAR and other state-space models
utilize the full information provided by the training
data, learning the behavior of each regime of environ-
mental and operational conditions separately rather
than only summarizing the common trends across
them. As demonstrated by the experimental results, this
leads to greater sensitivity to damage without raising
the false-positive rate. In addition, the state-space
model framework provides a way to infer the underly-
ing environmental and operational conditions, making
it practical for situations where there is only partial
knowledge of the EOV in the training or test data.

Figure 11. The probabilities of each state estimated by the SVAR model at each time step on an iteration of the matched
randomization study. The training states are 1, 9, 8, and 7; the healthy test state is state 8; the novel test state is state 10. This is the
same iteration from the matched randomization study test data as in Figure 7.

Figure 12. The probabilities of each state estimated by the SVAR model at each time step on an iteration of the novel EOV
randomization study. The training states are 9, 3, 1, and 7; the healthy test state is state 9; the novel test state is state 8.
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An important simplification in this article was the
choice to model the EOV with discrete states, an
assumption enabled by the dataset but not reflected by
many real-world sources of EOV. While the model is
still effective in the continuous case because of its abil-
ity to probabilistically average across different states,
defining effective methods for discretizing continuous
processes so that the resulting SVAR model learns a
representative set of models warrants further study.
The discretization could be defined manually or, noting
that defining discrete bins is similar to the unlabeled
case, learned using a method such as EM. It may be
possible to hybridize the discrete state-space framework
described here with the continuous models used by
Worden et al.14 and, in particular, to develop a model
where some components are discrete and others are
handled continuously.

Another interesting direction would be to incorpo-
rate more complex model components, such as the
LPV-AR and FS-TAR models used in Avendaño-
Valencia and Fassois,15 within the state-space
approach, as that may allow for better capturing of the
behavior of each individual state. It would also be of
interest to apply the state-space model to the problem
of damage identification, i.e., not only detecting the
presence of damage but also classifying what type of
damage had occurred.
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Appendix 1

Table 2. Detailed results of the false- and true-positive rates of each iteration of the matched randomization study, as well as the
states featured in each iteration.

Matched EOV study

Training states Healthy state Novel state SVAR VAR SVM Minor PCA

Healthy Novel Healthy Novel Healthy Novel Healthy Novel

1, 7, 6, 9 1 10 0.13 0.25 0.03 0.15 0.25 0.13 0.08 0.20
3, 4, 9, 1 9 12 0.00 0.93 0.00 0.83 0.03 0.55 0.00 0.35
3, 6, 4, 8 3 17 0.00 0.95 0.00 0.95 0.08 0.78 0.03 0.48
1, 7, 6, 9 7 11 0.00 0.68 0.00 0.53 0.05 0.43 0.00 0.25
2, 4, 6, 9 9 15 0.00 0.10 0.00 0.10 0.10 0.08 0.03 0.05
1, 8, 9, 3 3 10 0.00 0.10 0.05 0.05 0.08 0.03 0.03 0.20
1, 8, 6, 7 7 13 0.00 1.00 0.00 1.00 0.00 0.90 0.00 0.65
2, 6, 3, 8 2 16 0.00 0.08 0.00 0.05 0.03 0.03 0.10 0.05
2, 6, 9, 1 2 15 0.00 0.10 0.00 0.10 0.03 0.05 0.00 0.00
3, 2, 8, 9 8 15 0.03 0.13 0.00 0.10 0.18 0.08 0.08 0.03
2, 1, 7, 5 1 10 0.08 0.35 0.00 0.05 0.25 0.18 0.10 0.13
2, 3, 8, 1 2 15 0.00 0.10 0.00 0.10 0.00 0.03 0.00 0.00
2, 3, 7, 1 1 17 0.13 0.98 0.00 0.95 0.25 0.75 0.08 0.43
2, 5, 9, 7 9 15 0.00 0.13 0.05 0.10 0.18 0.15 0.03 0.08
3, 9, 4, 2 3 17 0.00 0.95 0.00 0.95 0.10 0.80 0.05 0.53
3, 5, 7, 4 7 17 0.00 0.95 0.03 0.95 0.08 0.78 0.03 0.70
1, 9, 8, 6 8 10 0.03 0.10 0.00 0.05 0.08 0.05 0.00 0.13
3, 7, 9, 5 7 17 0.00 0.98 0.03 0.95 0.08 0.78 0.03 0.70
1, 3, 2, 6 6 16 0.08 0.08 0.00 0.05 0.10 0.03 0.03 0.00
1, 4, 5, 8 8 13 0.03 1.00 0.03 1.00 0.08 0.90 0.03 0.65
2, 6, 3, 4 4 15 0.00 0.10 0.03 0.10 0.05 0.15 0.00 0.05
1, 6, 2, 7 1 11 0.03 0.68 0.00 0.53 0.25 0.38 0.05 0.20
3, 7, 4, 5 4 16 0.00 0.05 0.00 0.05 0.03 0.03 0.05 0.10
3, 8, 9, 7 3 16 0.00 0.08 0.03 0.05 0.10 0.05 0.05 0.10
1, 7, 6, 3 3 10 0.00 0.25 0.08 0.10 0.10 0.18 0.03 0.20
1, 6, 2, 4 1 10 0.00 0.05 0.00 0.05 0.15 0.05 0.03 0.08
2, 9, 1, 6 6 10 0.08 0.10 0.00 0.15 0.05 0.10 0.00 0.05
1, 6, 2, 3 1 16 0.03 0.08 0.00 0.05 0.28 0.03 0.08 0.00
2, 4, 3, 5 4 17 0.00 0.95 0.00 0.95 0.03 0.80 0.00 0.60
1, 4, 2, 7 2 12 0.00 0.90 0.00 0.83 0.00 0.53 0.00 0.30
2, 5, 8, 3 5 17 0.03 0.98 0.05 0.95 0.05 0.80 0.00 0.53
2, 7, 3, 9 9 15 0.00 0.13 0.05 0.10 0.15 0.13 0.00 0.05
3, 5, 8, 2 8 15 0.03 0.13 0.03 0.10 0.20 0.13 0.08 0.13
2, 1, 3, 4 1 11 0.00 0.60 0.00 0.55 0.18 0.23 0.08 0.23
3, 9, 8, 2 8 17 0.03 0.98 0.00 0.95 0.18 0.80 0.05 0.48
3, 8, 5, 9 5 16 0.03 0.08 0.08 0.05 0.05 0.08 0.00 0.15
1, 3, 5, 6 5 13 0.03 1.00 0.05 1.00 0.05 0.98 0.00 0.63
1, 5, 8, 6 5 11 0.03 0.68 0.08 0.45 0.05 0.28 0.00 0.25
2, 8, 7, 4 7 15 0.00 0.10 0.00 0.10 0.05 0.08 0.00 0.08
1, 8, 9, 4 8 10 0.00 0.05 0.00 0.05 0.08 0.05 0.00 0.15
1, 7, 3, 9 1 10 0.13 0.25 0.00 0.05 0.28 0.13 0.10 0.23
1, 4, 2, 6 4 12 0.00 0.90 0.03 0.75 0.00 0.55 0.00 0.30
2, 6, 9, 7 2 15 0.00 0.10 0.00 0.10 0.03 0.18 0.10 0.05
3, 4, 8, 7 8 17 0.03 0.95 0.00 0.95 0.10 0.73 0.05 0.55
2, 9, 7, 4 2 15 0.00 0.10 0.00 0.10 0.03 0.08 0.15 0.05
2, 1, 6, 7 2 14 0.00 1.00 0.00 1.00 0.03 1.00 0.00 0.90
1, 9, 2, 5 2 10 0.00 0.30 0.00 0.05 0.03 0.10 0.03 0.18
3, 6, 4, 7 4 17 0.00 0.95 0.03 0.95 0.05 0.78 0.00 0.60
2, 8, 7, 3 8 16 0.03 0.08 0.03 0.05 0.15 0.03 0.05 0.08
2, 8, 5, 3 3 17 0.00 0.98 0.00 0.95 0.10 0.80 0.05 0.58

EOV: environmental and operational variation; SVAR: switching vector autoregressive; VAR: vector autoregressive; SVM: support vector machine;

PCA: principal components analysis.
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Table 3. Detailed results of the false- and true-positive rates in each iteration of the novel EOV randomization study, as well as the
states featured in each iteration.

Novel EOV study

Training states Healthy state Novel state SVAR VAR SVM Minor PCA

Healthy Novel Healthy Novel Healthy Novel Healthy Novel

5, 4, 1, 6 1 3 0.03 1.00 0.08 0.25 0.15 0.03 0.15 0.03
8, 2, 4, 9 2 3 0.00 1.00 0.00 0.53 0.03 0.15 0.05 0.03
9, 5, 7, 1 7 3 0.00 1.00 0.00 0.15 0.05 0.13 0.03 0.10
8, 7, 3, 9 7 2 0.00 1.00 0.03 0.45 0.08 0.03 0.03 0.18
9, 3, 1, 7 9 8 0.00 1.00 0.03 0.05 0.10 0.38 0.00 0.05
8, 2, 7, 4 8 5 0.03 1.00 0.00 1.00 0.08 0.15 0.08 0.00
1, 2, 7, 6 6 5 0.08 1.00 0.00 1.00 0.08 0.40 0.03 0.03
8, 3, 6, 7 8 1 0.03 1.00 0.03 0.35 0.15 0.15 0.08 0.38
9, 6, 5, 4 4 8 0.00 1.00 0.00 0.15 0.05 0.33 0.00 0.10
1, 3, 7, 9 7 2 0.00 0.33 0.00 0.00 0.08 0.05 0.00 0.03
6, 1, 9, 7 6 4 0.05 1.00 0.00 1.00 0.05 0.20 0.00 0.00
7, 6, 8, 9 7 3 0.00 1.00 0.00 1.00 0.08 0.18 0.00 0.05
4, 6, 9, 8 4 1 0.00 1.00 0.05 0.13 0.00 0.18 0.00 0.18
9, 8, 4, 3 8 5 0.00 1.00 0.00 1.00 0.10 0.15 0.08 0.00
6, 4, 2, 1 6 5 0.00 1.00 0.00 1.00 0.05 0.13 0.03 0.00
6, 4, 7, 3 4 2 0.00 1.00 0.03 0.43 0.05 0.08 0.00 0.18
6, 5, 9, 7 6 8 0.08 1.00 0.00 0.38 0.18 0.45 0.10 0.10
2, 7, 3, 8 7 4 0.00 1.00 0.00 0.98 0.08 0.10 0.00 0.00
8, 1, 5, 6 8 2 0.03 0.05 0.03 0.00 0.08 0.00 0.03 0.00
2, 5, 7, 6 6 4 0.08 1.00 0.00 0.10 0.13 0.13 0.08 0.00
5, 1, 8, 4 8 7 0.03 1.00 0.03 1.00 0.08 0.43 0.03 0.08
2, 3, 7, 9 2 5 0.03 1.00 0.00 1.00 0.03 0.20 0.08 0.00
7, 3, 6, 1 6 8 0.08 1.00 0.00 1.00 0.08 0.48 0.00 0.20
6, 1, 2, 3 1 7 0.03 1.00 0.00 1.00 0.28 0.35 0.03 0.00
2, 4, 6, 8 2 3 0.00 1.00 0.00 0.58 0.03 0.10 0.03 0.08
6, 4, 1, 9 4 2 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.00
3, 2, 6, 8 2 4 0.00 1.00 0.00 0.98 0.03 0.10 0.03 0.00
7, 1, 3, 2 1 6 0.13 1.00 0.00 0.10 0.25 0.15 0.10 0.00
4, 1, 7, 9 1 3 0.03 1.00 0.00 0.35 0.18 0.13 0.10 0.05
2, 9, 6, 4 9 7 0.00 1.00 0.00 1.00 0.10 0.35 0.03 0.00
6, 1, 2, 8 1 4 0.00 1.00 0.00 1.00 0.13 0.10 0.00 0.00
1, 9, 5, 3 5 6 0.03 1.00 0.08 1.00 0.05 0.23 0.00 0.03
3, 2, 5, 1 3 4 0.03 1.00 0.00 0.05 0.10 0.13 0.03 0.00
4, 9, 1, 8 8 7 0.00 1.00 0.00 1.00 0.08 0.35 0.00 0.03
1, 4, 2, 7 2 9 0.00 1.00 0.00 1.00 0.00 0.60 0.03 0.10
3, 7, 6, 2 3 4 0.00 1.00 0.05 1.00 0.10 0.25 0.00 0.00
4, 9, 6, 1 9 8 0.00 1.00 0.00 0.03 0.03 0.13 0.00 0.03
4, 7, 6, 3 3 9 0.00 1.00 0.00 1.00 0.10 0.80 0.03 0.13
9, 1, 8, 6 1 3 0.05 1.00 0.00 1.00 0.18 0.08 0.10 0.03
4, 3, 7, 2 7 9 0.00 1.00 0.00 1.00 0.08 0.80 0.00 0.08
8, 2, 9, 5 2 6 0.00 1.00 0.00 1.00 0.05 0.55 0.18 0.15
7, 4, 2, 9 2 5 0.00 1.00 0.00 1.00 0.03 0.15 0.15 0.00
8, 2, 1, 6 8 5 0.03 1.00 0.03 1.00 0.08 0.15 0.00 0.00
5, 6, 7, 2 2 9 0.00 1.00 0.00 1.00 0.03 0.65 0.18 0.00
6, 1, 5, 9 6 3 0.05 1.00 0.00 0.20 0.05 0.13 0.00 0.03
4, 2, 8, 1 1 5 0.00 1.00 0.00 1.00 0.18 0.13 0.10 0.00
3, 2, 9, 1 1 5 0.08 1.00 0.00 1.00 0.20 0.15 0.05 0.00
4, 1, 8, 3 4 2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05
3, 5, 4, 9 4 7 0.00 1.00 0.00 1.00 0.03 0.58 0.00 0.10
4, 2, 5, 3 5 1 0.03 0.38 0.08 0.18 0.05 0.25 0.00 0.25

EOV: environmental and operational variation; SVAR: switching vector autoregressive; VAR: vector autoregressive; SVM: support vector machine;

PCA: principal components analysis.
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