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Abstract

Team sports such as ice hockey and basketball involve complex player interactions. Modeling how

players interact with each other presents a great challenge to researchers in the ϐield of sports analysis.

The most common source of data available for this type of analysis is player trajectory tracking data,

which encode vital information about themotion, action, and intention of players. At an individual level,

each player exhibits a characteristic trajectory style that can distinguish him from other players. At a

team level, a set of player trajectories forms unique dynamics that differentiate the team from others.

We believe both players and teams possess their own particular spatio-temporal patterns hidden in the

trajectory data and we propose a generic deep learning model that learns powerful representations

from player trajectories. We show the effectiveness of our approach on event recognition and team

classiϐication.

1 Introduction

Learning representative features from data is a fundamental problem in sports analysis. Visual data

(e.g., images and videos) and tracking data (e.g., player trajectories) are two common types of data

sources for analyzing sports games. Computer vision researchers in the past decades have been mak-

ing substantial progress in developing feature representations and algorithms for understanding hu-

man activities, with many benchmarks set up for recognizing sports actions [3, 7, 8]. Millions of pixels

in videos provide rich data, but it is necessary to develop accurate and effective algorithms for turn-

ing these pixels into useful information regarding the players’ actions. Advances in automated player

detection and tracking algorithms have made it possible to reliably extract trajectories of players from

either purpose-built camera systems or broadcast video feeds.

In this paper we show how such player trajectory data can be used in novel machine learning tech-

niques to obtain a variety of information regarding team and player behaviours. These player trajecto-

ries, time series of (x, y) coordinates of player movement, provide a simple yet effective way to encode

the spatio-temporal pattern of player motion. With appropriate arrangement of a group of player tra-

jectories, it can even represent the unique underlying motion pattern of a team.

Player tracking data have been extensively studied by researchers in sports analysis. Many of these

works study player trajectories from a data mining and knowledge discovery perspective by deploy-

ing various statistical models. However, there are few works on learning representative features from

player trajectories, which could be useful in many potential applications such as pattern recognition,

prediction, clustering, and retrieval. To this end, we propose discriminative feature representation

learning using deep convolutional neural networks.
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Existing literature on trajectory learning include [1, 5, 6, 11, 12]. Wei et al. [12] handcrafted a dic-

tionary representation of player movement and game context to predict shot outcome in tennis. [1]

proposed a team formation descriptor plus game statistics for identifying team styles. Most similar to

our work is [11], where the authors converted trajectory data to an image representation and applied a

2D convolutional neural network for classifying offensive plays. Miller and Bornn [6] analyze NBA team

strategies based on variants of probabilistic topic modeling that capture the structure of sets of player

trajectories. Le et al. [5] utilize deep imitation learning to generate alternative strategies for defensive

teams.

Convolution ϐilter learning is a standard processing paradigm in the machine learning community;

with 2D convolution successfully employed in images and 3D convolution in videos [2, 4, 9, 10]. We

observe that player tracking data come in the form of one dimensional signals, which is an ideal case to

deploy 1D convolutions.

In this paper, we demonstrate that 1D convolutions can learn discriminative features from player

and team trajectories. With the learned feature representations, ourmodel can automatically recognize

events, identify players, and classify teams. We show that, on an ice hockey dataset, our model with

only trajectories as input outperforms C3D [10], a deep neural network that takes videos as input, on

the task of event recognition. Our model achieves even better performance when used in combination

with videos. We also demonstrate, on a basketball dataset, how our model excels at team classiϐication

using only player trajectories.

2 Approach

We conduct three sets of experiments: event recognition, team classiϐication, and star player impact on

team classiϐication. Fig. 1 shows the structure of our proposed model. We develop a general-purpose

method for representing player trajectories that is used in all three tasks. They all share the same 1D

convolutional network that learns to represent trajectories. In this section, we start by describing our

1D convolutional network. Next, we showhow to utilize it formodeling the set of trajectories consisting

of all the players in a team.

2.1 Player trajectory features: 1D convolutional network

We propose a direct way of interpreting a trajectory. Recall that a person trajectory is essentially a

continuous signal. A 2D trajectory in world coordinates (player position in court / rink coordinates)

has two separate continuous signals, one for the x series and one for y series. We can split the input

[(x1, y1), (x2, y2), · · · , (xT , yT )] into two sequences [x1, x2, · · · , xT ] and [y1, y2, · · · , yT ], each being a

1D continuous signal. In our approach we treat these two sequences as two channels. We build a con-

volutional neural network on top of these inputs, with 1D convolution operating on each input. By

stacking layers of 1D convolution, we can learn combinations of x and ymovements that are indicative

of particular motion patterns.

In detail, letX ∈ RN×T denote the input, F ∈ RN×W×M denote the ϐilters in a convolutional layer

and O ∈ RM×T denote the output, where N is the number of input channels, T is the length of input

sequence,W is the ϐilter size andM is the number of ϐilters. To model the behaviour of a convolutional

layer1, we do the basic operation as follows:

Ok,t = σ

 N∑
i=1

W∑
j=1

Xi,t+j−1Fi,j,k

 . (1)

In the above formula, σ (·) can be any activation function. In our case, we choose σ(x) = max(0, x)

1We choose a step size of 1 when doing convolution and pad zeros to the input if the domain of a ϐilter goes outside of the

input.
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Figure 1: Our proposed trajectory network.

for all layers in our network. Each convolutional layer is followed by a max pooling layer to make the

model shift-invariant and help reduce the dimension of the output.

Let Z ∈ RM×dT
S e be the output of max pooling, where S is the step size in the pooling operation,

then we have

Zk,t = max
1≤j≤S

Ok, (t−1)·S+j . (2)

To build a network with stacked convolutional and max pooling layers, we use the output Zl−1 at layer

l − 1 as the inputX l at layer l:
X l = Zl−1. (3)

We repeat the process described in Eq. 1 and Eq. 2 for a number of layers. To obtain the ϐinal feature

representation, we ϐlatten the output of the last layer.

2.2 Team trajectory representations: permutation invariant sorting

To build features from a set of player trajectories, the most the intuitive way is to (i) concatenate fea-

tures extracted from each of the player trajectories or (ii) extract features directly from concatenated

player trajectories. Either way, we need to do concatenation. However, when we do concatenation, we

implicitly enforce an order among this set of players. Arbitrarily enforcing such order is problematic.

To resolve this issue, we have to renumber the players.

We propose a permutation invariant sorting scheme based on the distance from a candidate player

to the “anchor”. An “anchor” can be the ball or a key player deϐined based on task-speciϐic criteria. The

trajectory of the “anchor” is always placed in the ϐirst position. Other players are numbered according

to their distances to the “anchor”. The closest player is placed next to the “anchor” while the farthest

player is appended to the end. In the experiments, we use variants of the above concatenation and

sorting procedure, which we describe in detail below.

Event recognition in hockey: We annotate the player who is carrying the puck and we select this

player as the “anchor”. Other players are numbered according to this key player. Player trajectories
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are ϐirst fed into the same network for feature extraction, then all resulting features are concatenated

according to this order.

Team classiϐication in basketball: The ball is selected as the “anchor”. Players are numbered accord-

ing to the ball. We ϐirst stack the ball and the 5 offensive players into an ordered list of trajectories, then

we feed them all into the network to extract features.

3 Datasets

We conduct experiments on two datasets. The ϐirst incorporates visual and trajectory features: player

positions and appearances obtained from broadcast video footage of NHL hockey games. The second

includes trajectory features only: player tracks extracted from an external tracking system recording

player positions in NBA basketball games

3.1 The SPORTLOGiQ NHL Dataset

The SPORTLOGiQNHL dataset has both video and trajectory data. Unlike the NBA dataset where player

trajectories are obtained from a multi-camera system, the player positions in the SPORTLOGiQ NHL

dataset are estimated using a homography, whichmaps a pixel in image coordinates to a point in world

coordinates. SPORTLOGiQ Inc. utilizes state of the art algorithms to automatically detect and track play-

ers in raw broadcast videos. If we have the bottom-mid point of a player bounding box, we canmap this

point to world coordinates with a homography matrix, hence acquiring the player position. Similarly,

the SPORTLOGiQ NHL dataset also has detailed event annotation for each frame, each event being cat-

egorized into a super class and a ϐine-grained class. In our experiment, we use 8 games with 6 classes:

pass, dump out, dump in, shot, carry, and puck protection. Fig. 2 shows the fraction of each event in the

8-game dataset. A reader might notice that this is a highly unbalanced dataset in terms of events. We

will describe how we handle such imbalance in Sec. 4.1.

Figure 2: Number of samples per event in the hockey dataset.

Data Preprocessing: In a hockey game, typically there are 4 on-ice ofϐicials and 12 players (6 on

each team). Thus, there can be at most 16 persons on the rink at the same time. In the following we

do not make any distinction between ofϐicials and players and we use “player” to refer to all people on

the rink. Because the dataset is created from NHL broadcast videos where not all players are visible in

each frame, we need to set a threshold Np so that our model can handle a ϐixed number of players. If

the number of players available in a frame is less thanNp, we padwith zeros the part where players are

unavailable. Each training sample consists of data from Np players. The data of each player includes

a T -frame video clip (cropped from raw video using bounding boxes) and the corresponding T -frame

trajectory estimated from this video clip. Note that ourmodel supports variable-length input. If in some

frames a player is not available, we set the data in these frames to zeros. In our experiments,Np is set to

5 and video frame size is set to 96×96. We set T to 16 by ϐirst locating the center framewhere an event
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happens and then cropping 7 frames before the center frame plus 8 frames after it. If the center frame

of a certain event happens to be close to that of another event within 15 frames, we drop this sample.

3.2 The STATS SportVU NBA Dataset

The STATS SportVU data consist of positions of players and the ball in 2D world coordinates captured

by a six-camera system at a frame rate of 25Hz. Each frame has complete annotations of the events

happening in this frame, such as dribble, possession, shot, pass and rebound. The dataset we use has

around a thousand games during the 2013–2014NBA seasonwith around 106 frames in each game. We

will use this dataset for team classiϐication – determine the identity of a team from player trajectories.

Data Preprocessing: We extract 137176possessions from the dataset for experiments. Each posses-

sion starts with an offensive team having possession of the ball and ends with a shot. We ϐix possession

length to 200 frames. If a possession is longer than 200 frames, we crop it starting from the last frame

and count the number of frames backward until it reaches 200. If a possession is shorter than 200

frames, we pad zeros to it. Originally there are 25 frames per second, but we sample only half of the

frames in a second, so the sampled 200 frames actually represent a 16 second 2 long sequence.

4 Experiments

4.1 Hockey event recognition

The events used are pass, dump out, dump in, shot, carry and puck protection. The goal is to predict the

event label given the short video clips and trajectories of 5 players on the rink. The number of samples

of each event in the dataset are shown in Fig. 2. It is obvious that this dataset is highly unbalanced

with the pass event taking up half of the dataset. To resolve this problem, we minimize a weighted

cross-entropy loss function during training. The weighting for each class is in inverse proportion to its

frequency in the dataset, which is 0.07, 0.6, 1, 0.4, 0.2 and 0.7 for pass, dump out, dump in, shot, carry

and puck protection respectively.

We use mean average precision (mAP) as the metric. The proposed model is implemented with a

stack of 4 convolutional layers and we compare it with C3D, a deep learning model which applies 3D

convolutions to videos for action recognition. The result is shown in Table 1. It is worth noting that

the proposed 1D convolutional network with only player trajectories as input can beat the C3D model

that takes videos as input. This result is counter-intuitive because millions of video pixels deϐinitely

provide a lot richer information than a short series of (x, y) coordinates. Our conjecture is that, in ice

hockey games, events are ϐirmly associatedwith spatial locations. As is shown in Fig. 3, different events

tend to have different spatial distributions over the rink. For example, carry happens near the three

lines in the middle; dump in happens within the neutral zone; dump out mostly happens around the

corner andboundary. This strong spatial correlation ismore explicit in player tracking data than videos,

therefore easier to learn by directly observing player trajectories. This result explains the importance

of trajectory data for analyzing player behaviours.

We proceed by constructing amore powerfulmodel by concatenating the output features of 1D con-

volutional network and C3D and training this composite model end-to-end. When used in combination

with videos, the proposed model achieve even higher performance, as is shown in Table 1.

4.2 NBA team classiϐication

In this set of experiments, we classify 30 NBA teamswith a stack of 5 convolutional layers. Wemeasure

the performance according to the followingmetrics: accuracy and hit-at-k accuracy3, both of which are

216s = 200frames×2
25fps

3Hit-at-k accuracy means if any one of the top-k predictions equals the ground truth label, we claim it as being correctly

classiϐied.
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Figure 3: Visualization of locations where events happen. Samples are drawn from the test set.

C3D 1D conv C3D+1D conv

pass 77.30% 77.73% 79.15%

dump out 10.17% 22.30% 23.27%

dump in 10.25% 39.39% 37.29%

shot 34.17% 42.42% 50.86%

carry 86.37% 77.21% 86.21%

puck protection 11.83% 9.87% 8.43%

mAP 38.35% 44.89% 47.54%

Table 1: Average precision for each event.

calculated over possessions. However, a single trajectory series can hardly display the full underlying

pattern a team might possess. To resolve this issue, we propose to use all possessions in a game and

classify the game as a whole using majority voting. For example, if most possessions in a game are

predicted as the Golden StateWarriors, then themodel predicts this game to be a Golden StateWarriors

game. Table 2 shows the result. Our experiments demonstrate that the per-possession accuracy can be

largely improved when aggregated to game level and our best accuracy is surprisingly high – 95.91% –

compared to the chance performance of 1
30 = 3.33%.

Fig. 4b shows the confusion matrix obtained using the model aggregated to game level. For most

teams, our model can correctly predict the identity. The worst case is the Phoenix Suns (PHX in Fig.

4b), who the model correctly classiϐies with 65% correctly. While the lowest of any team, this is still a

signiϐicant improvement over random chance.

To see what kind of patterns the model learns over the time dimension, we visualize a small frac-

tion of the ϐilters in the ϐirst convolutional layer. In Fig. 4a, we show 64 ϐilters learned from the input

sequence of x coordinates of the ball. They appear to be shaped in various forms. Some of them are

similar, so there could be redundancy in these ϐilters. These temporal patterns are the building blocks

that form discriminative representations to distinguish teams.

acc hit@2 hit@3 game acc

24.78% 35.61% 42.95% 95.91%

Table 2: Team classiϐication result.
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(a) (b)

Figure 4: (a) Visualization of the ϐilters in the ϐirst convolutional layer. (b) Confusion matrix based on

game-wise classiϐication.

4.3 Impact of star players

Are the Golden StateWarriors easier to recognize when Steph Curry is leading the play? In this section,

we examine the impact of the presence of a “star player” on ourmodel’s ability to recognize NBA teams.

We re-use the samenetwork structure as in the task of teamclassiϐication, except that the star player

is anchored in the second position (the ball remains anchored in the ϐirst position). We deϐine a team’s

“star player” as the player with the most points during the 2013–2014 season. For training and eval-

uation, we consider only possessions in which the star player is on the court. Our model is trained to

perform 30-way team classiϐication, conditioned on the star player being on the court.

The trainedmodel obtains 42.45%per-possession accuracy on the 30-way classiϐication task, which

is signiϐicantly better than the 24.78%result in Table 1. Intuitively, this result tells us that we get nearly

twice the classiϐication rate when we remove possessions without the team’s leading player by points.

This indicates that there is a much more concise team identity in its starters relative to its role players

coming off the bench.

5 Conclusion

In this paper we have proposed to use 1D convolutions for learning discriminative feature representa-

tions from player tracking data while also resolving the permutation problem inherent in player track-

ing data. To show the generality of our approach, we conducted extensive experiments on challenging

team sports such as ice hockey and basketball, which involve complex player interactions. Our method

obtained surprisingly good results on both datasets and various tasks, demonstrating our approach is

generic and effective for capturing critical features of player tracking data.
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