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1 Introduction	
	
With	the	rise	of	optical	tracking	data,	the	ability	to	accurately	model	player	movement	has	become	
a	key	competitive	advantage	in	many	sports.	In	the	NBA,	this	tracking	data	is	available	at	a	rate	of	
25	measurements	per	second	and	provides	(!, #)	coordinates	 for	all	 ten	players	on	the	court	and	
(!, #, &)	coordinates	for	the	ball.	Analysis	of	this	data	presents	a	substantial	challenge,	due	to	both	
the	scale	of	the	data,	which	can	consist	of	more	than	100	million	rows	for	a	given	season,	and	to	the	
sophisticated	 methods	 required	 to	 make	 sense	 of	 it.	 Current	 approaches	 generally	 fall	 into	 two	
categories:	black-box	methods	and	Markov	models.	

Black-box	 methods	 have	 proven	 useful	 in	 modeling	 defensive	 situations	 [1]	 and	 in	 creation	 of	
sequence	models	to	forecast	player	movement	and	detect	plays	[2].	In	these	projects,	researchers	
successfully	 implemented	 neural	 networks	 that	 recreate	 player	 movement	 to	 a	 high	 degree	 of	
complexity,	but	unfortunately	these	models	lack	clear	interpretation.	Markov	models,	on	the	other	
hand,	 simplify	 movement	 to	 treat	 the	 players	 as	 billiard	 balls	 so	 that	 their	 position	 at	 time	 '	
depends	only	 on	 their	 position	 at	 time	 ' − 1,	 retaining	 a	 clear	 interpretation.	This	 approach	was	
used	 to	 great	 effect	 by	 Cervone	 et.	 al.	 [3],	 who	 relied	 on	 Markov	 transition	 probabilities	 to	
propogate	 action	 through	 a	 possession,	 thereby	 determining	 its	 expected	 value	 based	 on	 the	
current	state.	However,	Cervone	et.	al.	assume	a	simplistic	model	which	estimates	a	players	current	
position	as	a	 function	of	 location,	velocity,	and	acceleration,	 limiting	the	complexity	of	movement	
that	can	be	accurately	represented.	

In	 this	 work,	 we	 combine	 elements	 of	 traditional	 Markov	 approaches	 with	 tools	 from	 spatial	
statistics	 to	 develop	 a	 flexible	 nonparametric	 method	 which	 allows	 for	 complicated	 patterns	 of	
movement	 and	 incorporates	 the	presence	of	meaningful	 spatial	 features	 (such	as	 the	 three-point	
line),	while	remaining	completely	interpretable.	

1.1 Motivating	Example	
Let	 *+ = (!+, #+)	 represent	 a	 player's	 location	 on	 the	 court	 at	 time	 '.	 The	 sequence	 of	 player	
locations	during	 the	 game	*-, … , */ 	 can	be	 treated	 as	 a	Markov	 chain	with	 conditional	 transition	
density	0(*+	|*+3-).	Estimation	of	0(*+	|*+3-)	is	frequently	achieved	through	use	of	a	dynamic	linear	
model	[4],	which	posits	a	relationship	between	sequential	elements	in	the	Markov	chain	of	the	form	
*+ = 	45(*+3-) + 	7,	 where	 4	 is	 a	 vector	 of	 coefficients	 and	 5(∙)	 is	 a	 function	 that	 can	 output	
quantities	 such	 as	 location,	 velocity,	 and	 acceleration.	 Often	 7	 is	 assumed	 to	 follow	 a	9(0, ;<)	
distribution,	though	other	distributions	can	be	used.	An	advantage	of	this	representation	is	that	 it	
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offers	 a	 simple	 way	 to	 estimate	 0(*+	|*+3-)	 even	 in	 regions	 where	 data	 is	 sparse	 or	 completely	
unavailable.	However,	as	data	becomes	increasingly	nonlinear	or	non-Gaussian,	fitting	such	models	
can	become	prohibitively	difficult.	Nonparametric	approaches	have	a	similar	 functional	 form,	but	
rather	 than	 making	 distributional	 assumptions	 about	 the	 error	 term,	 7,	 it	 is	 assumed	 to	 be	
nonparametric	and	vary	as	a	 function	of	*+3-.	This	allows	7	 	 to	naturally	 incorporate	both	spatial	
variation	and	nonlinear	relationships.		

The	 simplest	 means	 of	 nonparametric	 estimation	 for	 Markov	 transitions	 is	 to	 use	 empirical	
maximum	likelihood	estimates	for	transition	probabilities.	These	can	be	calculated	by	partitioning	
the	 basketball	 court	 =	 into	 >	 regions	 ?-,… , ?@ 	 and	 letting	 the	 transition	 probabilities	 0AB =
CD*+ ∈ ?B	F	*+3- ∈ ?A),	i.e.,	the	probability	of	transitioning	to	region	?B 	at	time	'	given	that	a	player	
was	 in	 region	?A 	 at	 time	' − 1,	 for	all	 G, H = 1,… , >.	These	probabilities	are	commonly	stored	 in	a	
transition	probability	matrix	
	

I = 	 J

0-- ⋯ 0-@
⋮ ⋱ ⋮

0@- ⋯ 0@@

N,	

	
so	 that	 row	 H	 contains	 the	probabilities	of	 transitioning	 to	all	 other	 states	given	 that	 the	 chain	 is	
currently	in	state	H.	
	
The	maximum	 likelihood	estimate	 for	0AB 	 is	 0̂AB = 9AB/9A∙,	where	9AB 	 is	 the	number	of	 transitions	
from	state	?A 	 to	?B 	and	9A∙ = ∑ 9AB

@
BR- .	Unfortunately,	this	only	works	with	a	very	coarse	partition	

because	as	the	number	of	states	approaches	infinity,	0̂AB = 0	for	the	majority	of	H	and	G	even	though	
the	true	underlying	0AB 	are	non-zero.	We	desire	a	method	that	allows	us	to	estimate	not	just	coarse	
transition	probabilities,	but	continuous	 transition	densities.	One	way	 to	deal	with	 this	 is	 to	make	
assumptions	about	the	structure	of	the	transition	probabilities	that	generates	a	continuous	density	
as	the	number	of	elements	in	the	partition	increases.		

We	propose	a	general	framework	for	transition	density	estimation	which	borrows	strength	across	
the	rows	and	columns	of	the	transition	matrix	I	by	reparameterizing	a	Markov	model	as	a	Poisson	
point	process	 in	the	combined	input/output	space.	This	defines	a	relationship	between	a	discrete	
state	correlation	structure	and	a	stochastic	process	that	allows	us	to	easily	step	between	completely	
continuous	or	discrete	states	of	any	resolution.	In	Section	2	we	detail	the	three	relationships	that	
make	 this	 possible:	 first,	 equivalence	 between	 the	 likelihood	 for	 a	 Markov	 model	 and	 the	
multinomial	 distribution;	 second,	 the	 multinomial-Poisson	 transformation;	 and	 third,	 the	
connection	between	the	Poisson	distribution	and	a	Poisson	point	process.	Once	the	mathematical	
underpinnings	 for	 our	work	 have	 been	 established,	we	 demonstrate	 how	 it	might	 be	 applied	 to	
optical	 tracking	 data	 in	 Section	 3.	 Finally,	 in	 Section	 4	 we	 discuss	 future	 work	 and	 provide	
concluding	remarks.	

2 Moving	from	a	Markov	chain	to	a	Poisson	point	process	
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2.1 Multinomial	representation	of	a	Markov	chain	
Consider	 an	 ergodic	 first-order	Markov	 chain	 that	has	 values	 in	 some	domain	S ⊆	ℝV ,	W > 0,	 at	
times	' = 0,… , Y.	As	 in	Section	1.1,	partition	 the	domain	 into	>	 states	?-,… , ?@ .	Given	 the	 initial	
observation	Z[,	the	conditional	likelihood	for	the	Markov	chain	is		
	

	 \(I) =]CDZ+ ∈ ?BFZ+3- ∈ ?A^ =]]0
AB

_`a

@

BR-

@

AR-

/

+R-

	 (1)	

	
where	 CDZ+ ∈ ?BFZ+3- ∈ ?A^ = 0AB 	 and	9AB = ∑ b[!+3- ∈ ?A, !+ ∈ ?B]

/
+R- .	 The	 conditional	 likelihood	

listed	in	(1)	is	proportional	to	the	product	of	>	independent	multinomial	likelihoods	[5].	Therefore,	
we	can	estimate	transition	probabilities	by	assuming	that	transitions	from	state	H	are	realizations	of	
a	multinomial(9A∙, 0A-, … , 0A@)	distribution	for	all	H,	where	9A∙ = ∑ 9AB

@
BR- .		

	
2.2 Multinomial-Poisson	transformation	
Suppose	 e = (#-, … , #f)	 are	 independent	 Poisson	 random	 variables	 with	means	 g = (λ-, … , λi).	
The	 joint	distribution	of	e	 factorizes	 into	the	product	of	a	multinomial	distribution	and	a	Poisson	
distribution	over	j = ∑ #B

f
BR- ,	i.e.,		

	

5(e) =]5(#A)

f

AR-

= Poisson(j|Λ)Multinomial(e|w, j).	

	
Here	 Λ = ∑ λB

f
BR- 	 and	 w = (y-,… , yf)	 where	 yA = λA/∑ λB

f
BR- .	 Birch	 [6]	 showed	 that	 under	 the	

constraint	j = Λ	the	maximum	likelihood	estimate	for	w	 is	equivalent	whether	we	maximize	over	
the	multinomial	 density	 or	 the	 product	 of	 independent	 Poisson	 densities	 (see	 also	 [7],	 [8]).	 The	
connection	 to	modelling	Markov	 transitions	 follows	directly;	 if	we	assume	9AB~Poisson(λAB)	 then	
we	can	estimate	the	underlying	transition	probabilities	by	letting	0AB = λAB/∑ λAB

@
BR- .	

	
2.3 Poisson	point	process	
Our	review	of	Poisson	point	processes	is	necessarily	brief,	but	the	interested	reader	is	directed	to	
[9]	or	[10]	for	a	more	thorough	exposition.			A	point	process	is	a	stochastic	process	over	a	domain	S	
where	a	realization	from	the	process	is	a	finite	set	of	points	* = {|-, … , |}: |A ∈ S}.	The	distribution	
of	*	is	governed	by	an	intensity	function	Λ(|): S ⟶ [0,∞),	and	a	point	process	is	said	to	be	Poisson	
if,	for	any	subset	Ç ⊆ S,	the	number	of	points	falling	within	Ç	(denoted	9(Ç))	follows	a	Poisson(É)	
distribution,	 where	 É = ∫ Λ(|) Ö|

	

Ü
.	 Estimation	 of	 the	 intensity	 function	 is	 critical	 because	 it	

influences	both	the	number	of	points	and	where	they	fall	in	the	domain.	
	
The	likelihood	for	the	Poisson	point	process	is	
	

	 \(Λ(|); |-, … , |}) =]Λ(|A)expD−Λ(S)^,

	

A

	 (2)	

	
where	Λ(∙)	is	the	point	process	intensity	and	Λ(S) = ∫ Λ(|)Ö|

	

ã
.	Suppose	we	partition	S	into	a	series	

of	 discrete	 regions	Ç-,… , Çf .	 Conditional	 on	 the	 intensity	 function,	 if	 two	 regions	Ç-	 and	Ç<	 are	
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disjoint,	then	9(Ç-)	and	9(Ç<)	are	independent	Poisson	random	variables.	Due	to	this	property,	it	
follows	that	the	likelihood	over	this	partition	is:		
	

]expD−Λ(Çå)^DΛ(Çå)^
_(Üç)

/9(Çå)!

	

å

.	

	
As	the	partition	grows	increasingly	fine,	9(Çå) = 1	or	0,	depending	on	whether	or	not	there	is	an	
observation	in	Çå,	and	in	the	limit	we	reach	(2)	[10].		
	
To	 illustrate	 the	 connection	 to	Markov	 transition	 density	 estimation,	 let	 (!+3-, !+)	 be	 successive	
elements	 of	 our	Markov	 chain	 for	 arbitrary	 '.	 To	 estimate	 the	 conditional	 transition	 density	we	
would	set	0(!+|!+3-) = Λ(!+3-, !+)/ ∫Λ((!+3-, è))Öè	which,	by	properties	of	intensity	functions,	is	a	
valid	density.	Comparing	this	with	the	transition	probability	estimation	outlined	in	Subsection	2.2,	
we	 can	 see	 that	 this	 is	 simply	 the	 continuous	 extension	 of	 λAB/∑ λAB

@
BR- .	 This	 relationship	 is	

convenient	 because	 it	 allows	 us	 to	 estimate	 transition	 probabilities	 or	 densities	 for	 any	 size	
partition.	 Estimating	 continuous	 transition	 densities	 permits	 us	 to	 balance	 fidelity	 and	
interpretability,	generating	transition	surfaces	that	are	both	highly	detailed	and	easy	to	explain.	
	
2.4 Model	choice	and	inference	
In	summary,	we	have	created	a	general	inference	framework	wherein	one	can	estimate	continuous	
Markov	transition	densities	in	two	steps:	first,	assume	that	sequential	elements	of	the	Markov	chain	
(Z+3-, Z+)	are	realizations	from	a	Poisson	point	process	(note	that	Z+3-	and	Z+	can	be	real	or	vector	
valued)	 and	 estimate	 the	 corresponding	 point	 process	 intensity	 function	 Λ((Z+3-, Z+)).	 Second,	
calculate	the	conditional	transition	density	for	fixed	Z+3-	as	
	

0(Z+|Z+3-) =
ΛD(Z+3-, Z+)^

∫ΛD(Z+3-, è)^Öè
.	

	
Because	 our	 estimate	 of	 the	 transition	 density	 is	 a	 valid	 density,	 variates	 from	 it	 can	 be	 easily	
simulated	using	any	method	that	allows	for	sampling	from	a	nonstandard	distribution,	i.e.,	rejection	
sampling	[11].	
	
A	key	attribute	of	the	method	presented	in	this	paper	is	that	the	intensity	function	can	be	estimated	
by	 whatever	 method	 the	 user	 deems	 appropriate.	 One	 of	 the	 simplest	 examples	 is	 the	 kernel	
density	estimator	introduced	by	[12],	where	it	is	proposed	that	the	intensity	function	is	estimated	
by	
	

Λê(|) ≡
1

0í(|)
ì>í(| − |A)

å

AR-

	

	
where	>í(∙)	is	a	kernel	function	with	bandwidth	î,	and	0í(|)	is	an	edge	correction	that	scales	the	
intensity	 function	 to	 integrate	 to	 the	 appropriate	 count.	While	 this	 kernel	 estimator	 is	 useful,	 in	
order	to	incorporate	additional	structural	information	a	more	sophisticated	approach	is	necessary;	
a	log	Gaussian	Cox	process	(LGCP)	provides	an	elegant	solution.	Defined	simply,	a	LGCP	is	a	Poisson	
point	process	with	Λ(ï) = exp(ñ(ï)),	where	ñ(ï)	 is	a	Gaussian	process	(for	a	fuller	treatment	see	
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[9]).	 	Modelling	 transition	densities	as	a	LGCP	allows	us	 to	account	 for	 structural	 information	by	
regressing	 the	 mean	 of	 ñ(ï)	 on	 relevant	 covariates	 and	 through	 choice	 of	 covariance	 function.	
Because	 LGCP's	 are	doubly	 stochastic	 they	 are	 computationally	 challenging	 to	 fit.	Many	methods	
exist	to	simplify	this	computation,	including	integrated	nested	Laplace	approximation	(INLA)	[13],	
nearest-neighbors	Gaussian	processes	[14],	and	predictive	processes	[15].	In	the	following	results,	
we	use	process	convolutions	to	overcome	the	computational	expense,	a	method	that	replaces	the	
latent	Gaussian	process	ñ(ï)	with	a	basis	function	expansion	reliant	on	a	smoothing	kernel	[16].	

3 Application	to	tracking	data	
Having	 established	 the	mathematical	 relationship	 that	makes	 representing	 a	Markov	model	 as	 a	
Poisson	process	possible,	we	now	show	how	it	can	be	applied.	We	are	interested	in	modeling	the	
movement	of	 the	ball	 around	 the	 court.	 Specifically,	we	will	 examine	how	 that	movement	differs	
across	teams,	and	how	individual	players	and	coaches	impact	the	way	the	ball	moves.	We	analyze	
data	from	all	1230	regular	season	games	for	the	2015-16	NBA	season.	In	addition	to	the	coordinate	
information	for	the	players	and	the	ball,	the	tracking	data	also	includes	variables	indicating	when	
an	action	 such	as	a	dribble,	pass,	 or	 shot	occurs.	 In	order	 to	prevent	all	 of	 the	 transition	density	
mass	 being	 centered	 around	 the	 current	 location	 of	 the	 ball,	 we	 thin	 the	 data	 to	 only	 use	 ball	
locations	where	an	event	is	recorded,	leaving	us	with	2,280,281	total	transitions.		
	
The	 movement	 of	 the	 ball	 is	 assumed	 to	 be	 a	 first-order	 Markov	 chain	 with	 shots,	 fouls,	 and	
turnovers	 serving	 as	 absorbing	 states.	 By	 considering	 each	 data	 point	 in	 terms	 of	 its	 origin	 and	
destination	locations,	we	can	model	this	as	a	four	dimensional	LGCP	(one	dimension	for	each	!	and	
#	 location	 in	 the	 origin	 and	 destination)	 using	 a	 process	 convolution	model	 [16],	 as	 mentioned	
before.	
	
Due	 to	 the	 scale	 of	 the	 data,	 some	 concessions	 must	 be	 made	 to	 improve	 computational	
performance.	To	 this	 end,	we	 assume	 that	 the	 covariance	 function	 is	 separable	 in	 the	 origin	 and	
destination	 dimensions	 and	 use	 a	 truncated	 normal	 distribution	 as	 our	 kernel	 for	 the	 process	
convolution.	 A	 compact	 kernel	 results	 in	 a	 sparse	 design	 matrix,	 and	 separability	 allows	 us	 to	
construct	 the	 full	 design	 matrix	 via	 Kronecker	 product.	 Additionally,	 we	 divide	 the	 court	 into	
1.25	 × 1.25		 foot	 squares,	 resulting	 in	n = 1480	 grid	 cells	 and	n< = 2,190,400	 origin-destination	
grid	 cell	 combinations.	 This	 grid	 cell	 size	 is	 somewhat	 arbitrary,	 but	 provides	 a	 good	 balance	
between	computational	feasibility	and	a	high	level	of	resolution	for	the	transition	surface.	In	order	
to	calculate	the	process	convolution	weights,	we	place	k = 50	kernel	locations	in	a	hexagonal	grid	
over	the	court	region,	resulting	in	k< = 2500	kernel	locations	in	the	origin-destination	space.		
	
A	key	factor	in	our	decision	to	model	transitions	with	a	process	convolution	model	is	that	it	readily	
admits	 the	 inclusion	 of	 additional	 covariates.	 Because	 the	 location	 on	 the	 court	 where	 a	 shot	
originates	 impacts	 the	 value	 of	 a	 made	 basket,	 we	 do	 not	 expect	 the	 transition	 surface	 to	 vary	
smoothly	across	 the	 three	point	 line.	We	account	 for	 this	discontinuity	by	dividing	 the	court	 into	
r = 15	 regions	 and	 include	 information	 about	 transitions	 between	 the	 different	 regions	 in	 the	
design	matrix,	resulting	in	a	model	of	the	form:	logDΛ(|)^ = Z° + X£.	In	this	equation	Z	is	a	n< × r<	
matrix	of	indicator	variables,	with	a	1	in	column	r(i − 1) + j	indicating	that	the	transition	began	in	
court	 region	 i	 and	ended	 in	court	region	 j,	 and	X	 is	a	n< × k<	matrix	of	kernel	weights.	Thus,	our	
process	 convolution	 model	 consists	 of	 both	 macro	 transitions	 between	 court	 regions	 and	 fine	
scaled	spatial	variation.		
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Figure	1:	Log	intensity	surface	for	the	Golden	State	Warriors	(right),	decomposed	into	court	region	transitions	(left)	and	
a	spatial	component	(middle).	

Before	considering	comparisons,	we	do	an	initial	examination	of	the	transition	surface	for	a	single	
team.	Figure	1	shows	the	log	transition	surface	for	the	Golden	State	Warriors.	Note	that	because	the	
full	surface	 is	 four	dimensional,	we	can	only	display	what	 the	surface	 looks	 like	conditioned	on	a	
single	point,	indicated	in	these	figures	by	the	white	circle.	A	web	application	that	allows	the	user	to	
explore	 these	 surfaces	 for	 all	 potential	 conditioning	 locations	 is	 available	 at	
https://jwmortensen.shinyapps.io/transition_surface_visualization.	 In	 Figure	 1	 we	 have	
decomposed	the	full	log	intensity	surface	into	its	component	parts:	the	macro	transitions	between	
court	regions	and	the	continuous	spatial	surface.	These	plots	depict	the	intensity	surface	on	the	log	
scale,	 so	 they	 do	 not	 have	 the	 clean	 interpretation	 of	 the	 Markov	 transition	 densities,	 but	
considering	 plots	 on	 the	 log	 scale	makes	 it	 easier	 to	 see	 how	 the	 transition	 surface	 varies	 over	
space.	 Here	 we	 see	 that	 the	 full	 log	 intensity	 manifests	 the	 discontinuous	 effects	 of	 the	 macro	
transitions,	most	pronounced	at	 the	 top	 right	 arc	of	 the	 three	point	 line	and	near	 the	 left	 corner	
three.	In	the	area	directly	surrounding	the	conditioning	location,	the	probability	of	transitioning	in	
front	of	or	behind	the	three	point	line	is	close	to	equal,	but	the	discontinuity	grows	larger	further	
away	from	the	conditioning	location.	This	could	potentially	be	explained	by	the	fact	that	transition	
probabilities	due	to	dribbling	are	likely	less	impacted	by	the	three	point	line	than	transitions	due	to	
passing.	

By	 calculating	 transition	 surfaces	 under	 a	 variety	 of	 different	 conditions	 we	 can	 begin	 to	
understand	how	these	conditions	impact	ball	movement.	First	we	compare	two	different	teams,	the	
2015-16	Cleveland	Cavaliers	and	2015-16	Golden	State	Warriors.	In	order	to	compare	and	interpret	
surfaces,	 we	 convert	 log	 intensities,	 like	 the	 one	 shown	 in	 Figure	 1,	 into	 conditional	 transition	
densities.	 These	 surfaces	 can	 be	 interpreted	 as	 showing	 the	 likelihood	 of	 transitioning	 to	 any	
location	 on	 the	 court	 from	 the	 location	 indicated	 by	 the	 white	 dot.	 In	 order	 to	 facilitate	 easier	
comparison,	we	take	the	difference	of	the	density	surfaces,	shown	in	the	final	panel	of	Figure	2.	This	
surface	 is	 calculated	 by	 subtracting	 the	 Golden	 State	 surface	 from	 the	 Cleveland	 surface	 so	 that	
positive	 values	 indicate	 higher	 transition	 density	 for	 the	 Cavaliers	 and	 vice	 versa.	 Much	 of	 the	
surface	shows	that	there	is	essentially	no	difference	in	transition	densities,	but	we	can	see	that	the	
Warriors	have	a	higher	probability	of	moving	into	the	key	directly	in	front	of	the	white	dot	than	the	
Cavaliers.	 A	 glance	 at	 the	 scale	may	 lead	 one	 to	 believe	 that	 this	 difference	 is	 so	 small	 as	 to	 be	
meaningless,	 but	 bear	 in	 mind	 that	 the	 reason	 these	 densities	 are	 small	 is	 because	 the	
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normalization	for	the	conditional	density	is	occurring	over	such	a	large	region.	If	we	integrate	over	
the	blue	area	 in	 front	of	 the	white	 circle	 (the	area	 indicating	 larger	 transition	density	 for	Golden	
State)	then	we	get	-0.1109,	which	can	be	interpreted	as,	“for	every	100	possessions	that	start	at	the	
white	circle	the	Warriors	will	have	approximately	11	more	possessions	move	into	that	region	than	
the	 Cavaliers.”	 Because	 the	 nature	 of	 basketball	 is	 such	 that	 a	 few	 points	 per	 one	 hundred	
possessions	 often	 means	 the	 difference	 between	 winning	 and	 losing,	 this	 is	 a	 potentially	
consequential	difference.	

Figure	2:	Transition	density	surfaces	for	the	Cleveland	Cavaliers	(left)	and	Golden	State	Warriors	(middle)	for	the	2015-
16	season.	The	origin	point	for	these	surfaces	is	indicated	by	the	white	circle.	The	final	plot	is	the	difference	between	
Cleveland	and	Golden	State’s	transition	density	surfaces.	This	is	calculated	by	subtracting	the	surface	for	the	Warriors	
from	the	surface	for	the	Cavaliers,	so	negative	(blue)	values	indicate	areas	for	which	the	Warriors	have	higher	transition	
densities,	while	positive	(red)	values	indicate	areas	where	the	Cavaliers	have	higher	transition	densities.		

We	can	perform	a	similar	comparison	to	examine	how	individual	actors	impact	ball	movement	on	
the	court,	which	we	do	here	for	Golden	State	Warrior's	point	guard	Stephen	Curry	and	for	former	
Cleveland	Cavalier's	head	coach	David	Blatt.	To	assess	how	ball	movement	changes	when	Stephen	
Curry	is	present,	we	partitioned	all	of	Golden	State's	transitions	based	on	whether	or	not	Curry	was	
currently	on	the	court.	The	left	panel	of	Figure	3	shows	the	difference	surface	for	Curry,	conditioned	
on	 the	 same	 location	we	 used	 to	 compare	 Golden	 State	 and	 Cleveland.	 Of	 course,	 any	 observed	
changes	 cannot	 be	 directly	 attributed	 to	 Curry	 due	 to	 collinearity	 with	 his	 fellow	 players,	 but	
interestingly,	we	see	a	near	reversal	of	the	pattern	revealed	in	Figure	2.	With	Curry	on	the	court	the	
probability	of	moving	into	the	red	region	in	front	of	the	white	dot	is	0.151	higher	than	when	he	is	
off,	indicating	that	the	increased	probability	we	saw	for	Golden	State	to	move	into	the	key	in	Figure	
2	is	primarily	due	to	Curry	and	whichever	players	share	most	of	his	minutes.		
	
In	 addition	 to	 examining	 player	 effects,	 we	 wanted	 to	 see	 if	 we	 could	 capture	 differences	 in	
coaching.		David	Blatt,	who	was	the	head	coach	of	the	Cleveland	Cavaliers	at	the	start	of	the	2015-
16	 NBA	 season	 until	 he	 was	 fired	 on	 22	 January	 2016,	 presented	 an	 ideal	 opportunity.	 We	
compared	ball	movement	for	the	41	games	he	served	as	Cleveland's	coach	to	the	41	regular	season	
games	the	Cavaliers	played	after	his	 firing	 in	an	attempt	to	assess	what	affect	coaching	may	have	
had	on	the	Cavaliers'	play	style.	From	the	plot	on	the	right	side	of	Figure	3	we	can	see	that	when	
David	Blatt	was	coach	the	probability	of	moving	from	that	specific	location	on	the	right	side	of	the	
key	 to	a	wide	 range	of	 locations	was	 slightly	 elevated,	whereas	 the	probability	mass	has	a	much	
higher	 concentration	 around	 the	 conditioning	 location	 for	 the	 games	 played	 after	 his	 coaching	

●

0.001

0.002

0.003

0.004

0.005

CLE transition density

●

0.001

0.002

0.003

0.004

0.005

GSW transition density

●

−0.0015

−0.0010

−0.0005

0.0000

0.0005

CLE density minus GSW density



	

	 8	

2019	Research	Papers	Competition		
Presented	by:	

	 	
	

tenure	was	over.	This	pattern	would	seem	to	suggest	that	there	was	greater	offensive	entropy	and	
increased	ball	movement	with	Blatt	as	coach.	

	
Figure	3:	Difference	surfaces	for	Stephen	Curry	(left),	the	starting	point	guard	for	the	Golden	State	Warriors,	and	David	
Blatt	(right),	former	head	coach	for	the	Cleveland	Cavaliers.	For	Curry,	areas	of	red	indicate	regions	where	the	transition	
density	is	higher	when	Curry	is	on	the	court.	For	Blatt,	red	regions	indicate	areas	where	the	transition	density	was	higher	
while	he	was	coach.	

4 Future	work	and	conclusions	
In	 Section	 2	 we	 established	 the	 mathematical	 foundation	 for	 modeling	 Markov	 transitions	 as	
Poisson	point	processes,	 and	 in	Section	3	we	showed	how	 they	 could	be	used,	but	 there	are	 still	
several	opportunities	for	further	research.	Thus	far	we	have	assumed	that	transition	densities	are	
temporally	homogeneous.	Due	to	 the	nature	of	sports	 in	general,	 this	 is	a	simplifying	assumption	
that	will	frequently	be	violated;	figuring	out	how	to	adapt	this	method	to	account	for	time-varying	
transitions	 is	 an	 intriguing	 option	 for	 further	 work.	 An	 additional	 research	 path	 is	 to	 focus	 on	
scalability.	 We	 have	 successfully	 modeled	 two-dimensional	 data,	 but	 borrowing	 strength	 across	
origins	and	destinations	required	us	to	fit	a	four-dimensional	Poisson	process.	More	work	needs	to	
be	done	to	extend	this	method	to	three-dimensional	data	and	beyond.	Fortunately,	for	most	sports,	
tracking	data	 is	only	available	 in	 two-dimensions	anyway,	 so	 this	 should	not	 impede	adoption	of	
this	framework.		
	
Our	 examples	 in	 this	 paper	 have	 been	 confined	 to	 the	 NBA,	 but	 this	 approach	 can	 be	 used	 to	
produce	 transition	estimates	 in	all	 sports	where	 tracking	data	 is	available.	Additionally,	 although	
we	 estimated	 transition	 surfaces	 in	 Section	 3	 and	 used	 them	 to	 examine	 teams,	 players,	 and	
coaches,	 this	 is	 merely	 one	 example	 of	 how	 this	 methodology	 can	 be	 used.	 This	 framework	 is	
valuable	 anywhere	 accurate	 representations	 of	 movement	 are	 required,	 and	 could	 provide	
immediate	benefits	in	cases,	such	as	expected	possession	value	(EPV)	[3],	that	have	previously	been	
using	simple	parametric	models	to	capture	player	movement.	One	particularly	nice	 feature	of	 the	
point	process	approach	as	 it	applies	 to	sports	 is	 that	 it	simplifies	 the	 inclusion	of	spatial	 features	
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that	can	impact	transitions,	shown	by	the	discontinuity	we	captured	at	the	three	point	line	in	Figure	
1.		
	
In	 conclusion,	we	have	presented	a	 straightforward	 framework	 to	modeling	movement	data	 that	
allows	 great	 complexity	 while	 maintaining	 interpretability.	 By	 using	 Poisson	 point	 processes	 to	
model	 Markov	 transitions,	 we	 have	 extended	 Markov	 models	 to	 continuous	 space	
nonparametrically,	which	balances	the	high	fidelity	provided	by	black-box	methods	without	losing	
the	inherent	meaning	provided	by	conditional	transition	densities.	
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