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ABSTRACT
What is the premium on house price for a particular school district? To estimate this in New York City we
use a novel implementation of a geographic regression discontinuity design (GeoRDD) built from Gaussian
processes regression (kriging) to model spatial structure. With a GeoRDD, we speci!cally examine price
di"erences along borders between “treatment” and “control” school districts. GeoRDDs extend RDDs to
multivariate settings; location is the forcing variable and the border between school districts constitutes
the discontinuity threshold. We !rst obtain a Bayesian posterior distribution of the price di"erence func-
tion, our nominal treatment e"ect, along the border. We then address nuances of having a functional
estimand de!ned on a border with potentially intricate topology, particularly when de!ning and estimating
causal estimands of the local average treatment e"ect (LATE). We test for nonzero LATE with a calibrated
hypothesis test with good frequentist properties, which we further validate using a placebo test. Using
our methodology, we identify substantial di"erences in price across several borders. In one case, a border
separating Brooklyn and Queens, we estimate a statistically signi!cant 20% higher price for a house on
the more desirable side. We also !nd that geographic features can undermine some of these comparisons.
Supplementary materials for this article, including a standardized description of the materials available for
reproducing the work, are available as an online supplement.
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1. Introduction

How much do New York City (NYC) house prices vary as a
function of di!erent school zones? In NYC, the city-wide public
school district (the largest school district in the United States) is
divided into 32 subdistricts. Many complex rules and systems
control school access, with some of these systems depending
on these school zones. More broadly, it is commonly believed
that quality of schools can have signi"cant e!ects on the price
of nearby housing, as at least some parents will make e!orts to
live in locations that increase the chances of access to perceived
higher quality schools. And like any city in the United States,
NYC public schools are said to vary in quality. We then ask, does
something like this mechanism play a role in determining NYC
housing costs? Of course, NYC house prices vary for a multitude
of reasons, many not related to the quality of public education
in a given subdistrict at all. Our goal is to measure the cost,
in terms of housing, of being in one school subdistrict versus
another beyond these other varying factors.

Economists have long been interested in measuring and
using variation in house price across district lines to estimate
the implicit price of school quality. Black and Machin (2011)
reviewed the existing literature on this topic, and classify the
various identi"cation strategies and methodologies that have
been proposed. Typically, the theoretical underpinning of this
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literature is the hedonic valuation model (Rosen 1974; Sheppard
1999), whereby the price of a house is decomposed into (usually
log-linear) contributions from characteristics of the house, of
the neighborhood, and of the schools that local residents can
access. The estimation of the causal e!ect of a unit of school
quality on the price of a house is made di#cult by unobserved
neighborhood characteristics which correlate with both school
quality and house prices. Consequently, ordinary least squares
(OLS) estimates will be confounded by these unobserved factors
(Black and Machin 2011).

However, by paying attention to the geographic bound-
aries of public school subdistricts within NYC, we can poten-
tially identify the causal e!ect that one subdistrict versus
another could have on house prices. Starting with Black (1999),
economists have recognized the opportunity o!ered by public
school systems that rely on attendance districts to assign chil-
dren to schools. If houses on opposite sides of the boundaries
between districts have access to the same neighborhood ameni-
ties (public transport, parks, etc.) except for schools, then the
price di!erence between otherwise similar houses can plausibly
be attributed to di!erence in the quality of the schools that their
residents can access. This strategy to identify and estimate the
causal e!ect of school quality can be understood as a regression
discontinuity design (RDD) along the entire district boundary.
Given New York’s complex methods for assigning schools to
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students, it is an open question whether these subdistrict lines
will similarly result in systematically di!erent prices.

RDDs are natural experiments characterized by the treat-
ment assignment being fully determined by some covariates,
which are termed “forcing” variables. A typical RDD scenario
arises when a treatment is given to all units with a forcing
variable that falls below (or above) an arbitrary threshold value,
and is withheld from units on the other side of the threshold. If,
as is o$en the case, the forcing variable is also predictive of the
outcome of interest, then treatment assignment and outcomes
are confounded, but by focusing on units near the threshold,
a causal treatment e!ect can nonetheless be estimated. The
theory and methods for RDDs date from the 1960s, starting with
Thistlethwaite and Campbell (1960). Cook (2008) traced the
history of how interest in RDDs subsequently waned until the
late 1990s, when the design saw renewed attention, theoretical
progress, and applications in the social sciences.

In our application, the forcing variable is geographic location
of a house sale, and the threshold, no longer a single point, is
the border between school subdistricts. Until relatively recently,
most theory and applications of RDDs were for univariate
cases, but, beginning with Papay, Willett, and Murnane (2011),
methods have been developed to analyze multivariate RDDs.
Imbens and Zajonc (2011) extended the local linear regression
methods (see Imbens and Lemieux 2008) that are popular for
analyzing univariate RDDs (1D RDDs) to settings with multiple
forcing variables. When these forcing variables are spatial, that
is, treatment and control units are separated by a geograph-
ical border—as is the case in our application—this becomes
a geographical regression discontinuity design (GeoRDD). A
convenient approach to GeoRDDs sometimes seen in applied
work (e.g., Holmes 1998; Magruder 2012; Chen et al. 2013;
MacDonald, Klick, and Grunwald 2015) is to reduce it to a
1D RDD by using the signed minimum distance to the boundary
(positive for treatment and negative for control) as the forcing
variable, a method we refer to as “projected 1D RDD.” But this
can fail to capture the spatial variation in outcomes, resulting
in a confounded estimator: see Section 1 of the supplementary
materials and Section 4.2 of Keele and Titiunik (2015). Firmer
theoretical foundations for GeoRDDs are built by Keele and
Titiunik (2015), who extended the identi"cation assumptions
that were formalized by Hahn, Todd, and Van der Klaauw (2001)
for 1D RDDs, and by Imbens and Zajonc (2011) for multivariate
RDDs. To estimate the treatment e!ect, Keele and Titiunik
(2015) and Keele et al. (2017) applied the projected 1D RDD
method locally around points on the border, thus alleviating
the problem of spatial confounding. For valuing school quality,
Gibbons, Machin, and Silva (2013) and Fack and Grenet (2010)
proposed matching methodologies to address the issue of spatial
confounding. By matching similar units on opposite sides of the
border that are near each other geographically, the di!erence
in their outcomes can plausibly be attributed to the presence
of the border. Similarly, Keele, Titiunik, and Zubizarreta (2015)
used the matching methods of Zubizarreta (2012) in a GeoRDD
to estimate the e!ect of ballot initiatives on voter turnout in
Milwaukee, Wisconsin.

Spatial statistics, the branch of statistics dedicated to infer-
ence for geographical units with spatially correlated outcomes,
has been mostly absent from this literature. In this article, to take

advantage of the geographic information available in our NYC
application, we develop a framework for analyzing GeoRDDs
that is a spatial analogue of 1D RDD methods. Broadly, 1D RDD
methodologies (Imbens and Lemieux 2008) are composed of
three steps: (i) "t a smooth function to the outcomes against the
forcing variable on each side of the threshold, (ii) extrapolate
the functions to the threshold point, and (iii) take the di!er-
ence between the two extrapolations to estimate the treatment
e!ect at the threshold point. Reusing the same methodological
skeleton and applying it to our geographical RDD application,
our framework proceeds analogously: (i) "t a smooth surface to
the outcomes (in our case, house prices) against the geograph-
ical covariates in each region, (ii) extrapolate the surfaces to
the border curve (in our case, the boundary between two sub-
districts), and (iii) take the pointwise di!erence between the two
extrapolations to estimate the treatment e!ect along the border.
The usefulness of spatial models is then evident; we use kriging,
also known as Gaussian process regression (GPR), to "t and
extrapolate the outcomes, but other spatial methods could also
be suitable. For 1D RDDs, Branson et al. (2019) proposed a
GPR methodology that exhibits promising coverage and MSE
properties compared to local linear regression. We believe this
approach to be particularly suitable to GeoRDDs, as GPR is
a well-established tool in spatial statistics for "tting smoothly
varying spatial processes. See Banerjee, Carlin, and Gelfand
(2014) for a textbook introduction to kriging for spatial data,
and Rasmussen and Williams (2006) for a machine learning
perspective.

Our implementation of the methods proposed in this article
uses the GaussianProcesses.jl package (Fairbrother et
al. 2018) for the julia programming language (Bezanson et al.
2017). All replication materials for our analysis are available on
the "rst author’s GitHub account.

Section 2 explains our GeoRDD methodology. In Section 2.1,
we use GPR to estimate the treatment e!ect along the border by
extending the model of Branson et al. (2019) to geographical
settings. A peculiarity of GeoRDDs is that the estimand is a
function de"ned everywhere along the border, which is a one-
dimensional manifold embedded in two-dimensional space.
Furthermore, geographical borders, whether they be political or
natural, are rarely simple straight lines. The topology of borders
complicates the de"nition and interpretation of estimands for
the local average treatment e!ect (LATE), which we address in
Section 2.3, where we obtain Bayesian estimators for multiple
possible LATE estimands and discuss their properties. In Sec-
tion 2.4, we turn to hypothesis testing, and propose a method to
test against the null hypothesis of no treatment e!ect along the
border.

In Section 3, we apply our methodology to the problem of
valuing school quality, using publicly available data of prop-
erty sales in NYC to determine whether school districts a!ect
property prices. Initially focusing on a single border between
two school districts, we estimate the treatment e!ect everywhere
along the border, obtain estimates of the LATE, and perform and
validate a hypothesis test. For that border, we "nd a statistically
signi"cant di!erence in price across the border with a p-value
of 0.003, and estimate that the same house located near the
border will on average fetch an almost 20% higher price in
district 27 than in district 19. However, this e!ect cannot be
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attributed solely to the quality or reputation of the schools, as
this border also separates the boroughs of Brooklyn and Queens,
thus confounding the causal e!ect of the districts. We then
extend to the other borders between subdistricts in NYC, and
talk about cross-cutting themes in our evaluation.

2. GeoRDD Estimation With Gaussian Processes

We largely adopt the setup and notation for GeoRDDs laid out
in Keele and Titiunik (2015). The outcomes Yi of n units with
spatial coordinates si are observed within an area A of two-
dimensional coordinate space. The units are separated into nT
treatment units in area AT ⊂ A and nC units in the control
area AC. The de"ning characteristic of GeoRDDs is that the two
areas are adjacent but nonoverlapping, intersecting only at the
border B between them. Throughout this article, points on the
border are denoted by b. Under Neyman’s potential outcomes
framework for causal inference (Rubin 1974; Splawa-Neyman
et al. 1923/1990, but see, e.g., Rosenbaum 2010 for a good
discussion and overview), each unit i has potential outcomes
YiT and YiC under treatment and control, respectively. Let Zi
denote the treatment indicator, which is equal to one if unit i is
in the treatment area, and zero if it is in the control area. Unlike
traditional randomized experiments, treatment assignment is a
deterministic function of a unit’s geographical coordinates si:
Zi = I {si ∈ AT}. The observed outcome for unit i is Yi =
ZiYiT +(1−Zi)YiC. We denote the vector of observed outcomes
of the treatment units and control units, respectively, by YT and
YC, and Y the vector formed by concatenating YT and YC.

For 1D RDDs, because the treatment and control regions do
not overlap, the treatment e!ect is typically only inferred at the
threshold X = b. As was already recognized by Thistlethwaite
and Campbell (1960), this choice requires the least extrapolation
of the "tted regression functions, which makes the estimated
treatment more credible. The estimand at the threshold can be
obtained as the di!erence of the two limits of the expectation of
the conditional regression functions

τ = E [YiT | Xi = b] − E [YiC | Xi = b]
= lim

x↓b
E [Y | X = x] − lim

x↑b
E [Y | X = x] , (1)

where the second equality requires the assumption that
the conditional regression functions E [YiT | Xi = x] and
E [YiC | Xi = x] are continuous in x (see Assumption 2.1 in
Imbens and Lemieux (2008) and the discussion that follows).
Analogously, we focus on the treatment e!ect at the border B
between the treatment and control regions:

τ : B → R de"ned as τ (b) = E [YiT − YiC | si = b] . (2)

This is the functional estimand de"ned in Imbens and Zajonc
(2011) and Keele and Titiunik (2015). For any b ∈ B, τ (b) can be
obtained as the di!erence of the two limits of the expected out-
comes, approaching b from the treatment or the control side of
the border, given the assumption that the conditional regression
functions E [YiT | si = s] and E [YiC | si = s] are continuous in
s within A. This result is formalized under Assumption 2.2.2
by Imbens and Zajonc (2011) and Assumption 1 in Keele and
Titiunik (2015).

2.1. Model Speci!cation

Our GeoRDD framework allows any method to be used to "t
the outcomes on either side of the border. In this article, we
use GPR for this purpose. GPR, known as kriging in the spatial
statistics literature, is a Bayesian nonparametric method for
"tting smooth functions. Recently, Branson et al. (2019) showed
GPR to be a promising approach for the analysis 1D RDDs.
Further inspired by the popularity of GPR in spatial statistics,
we extend the model of Branson et al. (2019) to geographical
RDDs.

On each side of the border, we model the observed outcomes
Yi at location si as the sum of an intercept m, a spatial Gaussian
process (GP) f (s), and iid normal noise ε. The GP has zero
mean, and its covariance function is a modeling choice. There
is a rich literature of possible covariance functions, known as
“kernels” in machine learning; see Banerjee, Carlin, and Gelfand
(2014) and Rasmussen and Williams (2006) for examples. In
this article, we use the Matérn ν = 1/2 covariance (also known
as the exponential kernel) for its ease of understanding and its
prevalence in applied spatial statistics. This yields the outcomes
model:

YiT = mT + fT(si)︸ ︷︷ ︸
gT(si)

+εi and YiC = mC + fC(si)︸ ︷︷ ︸
gC(si)

+εi ,

with εi
⊥⊥∼ N (0, σ 2

ε ) ;

fT , fC
⊥⊥∼ GP(0, k(s, s′)) with

k(s, s′) = σ 2
GP exp(−

∥∥s − s′
∥∥

2
/
%) .

(3)

The treatment e!ect at a location b on the border is derived as
the di!erence between the two noise-free surfaces gT and gC:

τ (b) =
[
mT + fT(b)

]
−

[
mC + fC(b)

]
. (4)

This can be visualized as the height of a cli! along the border B
separating the two smooth plains of the treatment and control
regions. τ (b) is a conditional average treatment e!ect (see, e.g.,
Hill 2011), giving the expected treatment e!ect at a given loca-
tion, not including idiosyncratic, unit-speci"c noise that could
include individual-level treatment e!ect heterogeneity.

In this speci"cation, the hyperparameters %, σGP, and σε are
the same in the treatment and control regions, so we assume that
the spatial smoothness of the responses is not a!ected by the
treatment. We expect that this assumption will be reasonable in
many applications, but it can be easily relaxed, as discussed in
Branson et al. (2019).

2.2. Inference of the Treatment E"ect

If mT and mC are given normal priors with variance σ 2
m, then

the model speci"cation (3) can be used to obtain covariances
between the observations, the GPs, and the mean parameters.
Given hyperparameters θ = (%, σGP, σε , σm), any vector with
entries consisting of observations, points on the potential out-
comes surface fT and fC, and the mean parameters mC, mT is
jointly multivariate normal. Therefore, the distribution of any
such vector conditioned on another is also multivariate normal,
with mean and covariances analytically tractable, and easily
computed.
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In accordance with the framework laid out in Section 1,
we proceed by extrapolating both GPs to the border, and then
taking the di!erence of the predictions to obtain the posterior
treatment e!ect along the border. Computationally, we need
to represent this border as a set b1:R = {b1, . . . , bR} of R
“sentinel” units dotted along B. The extrapolation step then
follows mechanically through multivariate normal theory. On
the treatment side, for example, we have a posterior for the price
curve at the sentinel points of

gT(b1:R) | YT , θ ∼ N
(
µb1:R|T , &b1:R|T

)
, with

µb1:R|T = KBT&−1
TT YT and

&b1:R|T = KBB − KBT&−1
TT Kᵀ

BT ,
(5)

with the various covariance matrices KBB, KBT , &TT , etc.,
derived from the model speci"cation (see Appendix A for
their derivations and expressions). Analogously, predictions for
gC(b1:R) are obtained using the data in the control region, and
their posterior mean and covariance denoted, respectively, by
µb1:R|C and &b1:R|C. Since the two surfaces are modeled as inde-
pendent, the treatment e!ect τ (b1:R) = gT(b1:R) − gC(b1:R) has
posterior

τ (b1:R) | Y , θ ∼ N
(
µb1:R|Y , &b1:R|Y

)
, with

µb1:R|Y = µb1:R|T − µb1:R|C and
&b1:R|Y = &b1:R|T + &b1:R|C .

(6)

Our τ (b1:R) is an R-vector with the rth entry τ (br) being the
treatment e!ect evaluated at br . The posterior mean and covari-
ance of τ (b1:R) are the primary output of our GeoRDD analysis;
we refer to (6) as the “cli! height” estimator. For a frequentist
view, we would take the µb1:R|Y as our point estimates.

This leaves the choice of the hyperparameters: θ = %,
σGP, σε , and σm. For σm, we arbitrarily pick a large number,
so that the prior on the mean parameters is weak. The rest
are optimized by maximizing the marginal likelihood of the
observations p (Y | %, σGP, σε), which is available analytically
and easily computed for GPR. This empirical Bayes approach
is common in spatial and machine learning applications of
GPs. An alternative would be to also specify a prior on the
hyperparameters, which would be preferable to fully account
for the uncertainty in the model, but fully Bayesian inference
of large GP models tends to be computationally expensive.

2.3. Estimating the Local Average Treatment E"ect

Our τ (b) gives the treatment impact along the full border, but
we o$en want to summarize it into an overall LATE. Given a
weight function wB(b) de"ned everywhere on the border B we
can calculate the LATE as the weighted average of τ (b) using
a weighted mean integral. We approximate this integral as a
weighted sum at the sentinels b1:R:

τw =
∮
B wB(b)τ (b)db∮

B wB(b)db ≈
∑R

r=1 wB(br)τ (br)∑R
r=1 wB(br)

. (7)

This approximation assumes the sentinels are evenly spaced; if
they are not, each term in the sum needs to be reweighted by the
length of the border the sentinels represent.

The posterior distribution of τ (b1:R) is multivariate normal
(see (6)). Since τw is a linear combination of τ (b1:R), its posterior
is also normal, with mean µτw|Y and variance &τw|Y approxi-
mated by

µτw|Y ≈ wB(b1:R)ᵀµb1:R|Y
wB(b1:R)ᵀ1R

and

&τw|Y ≈ wB(b1:R)ᵀ&b1:R|Y wB(b1:R)

(wB(b1:R)ᵀ1R)2 , (8)

where wB(b1:R) is the R-vector of the weight function evaluated
at the sentinels, and 1R is an R-vector of ones. Given a weight
function, the “natural” estimand in (7) for the estimator in (8) is
the same weighted mean applied to the true τ .

An alternative perspective on these estimators is given by
the weights induced on the observations. Combining Equations
(5), (6), and (8), we obtain that the posterior mean of τw is a
weighted di!erence in means between the treatment and control
units:

E
(
τw | Y

)
= wᵀ

TYT − wᵀ
CYC, (9)

with vectors of “unit weights” given by

wT = &−1
TT Kᵀ

BTwB(b1:R)

wB(b1:R)ᵀ1R
and wC = &−1

CCKᵀ
BCwB(b1:R)

wB(b1:R)ᵀ1R
,

(10)
for treatment and control units, respectively.

We next motivate and consider four possible choices of
wB(b), and explore interpretations, advantages, and drawbacks.
Section 3 of the supplementary materials gives two further
choices, the projected land LATE τGEO, and the projected super-
population LATE τPOP. In that section, we also provide a simu-
lation study to better understand the di!erent LATE choices. A
summary of their properties is provided in Table 1.

2.3.1. Uniform Weighting
The simplest choice is uniform weights wB(b) = 1, a seem-
ingly reasonable and unopinionated decision. The uniformly
weighted LATE τUNIF is estimated by averaging the entries of
the mean posterior at the sentinels. Following (7) and (8):

τUNIF =
∮

B
τ (b)db

/ ∮

B
db ,

τUNIF | Y , θ ∼ N
(
µτUNIF|Y , &τUNIF|Y

)
, with

µτUNIF|Y =
(
1ᵀRµb1:R|Y

)
/R and

&τUNIF|Y =
(
1ᵀR&b1:R|Y 1R

)
/R2 .

(11)

The uniformly weighted estimand takes on a geometric inter-
pretation: equal-length segments of the border are given equal
weight. Unfortunately, uniform weights su!er from two issues
that we now describe and address.

With uniform border weights, parts of the border adjoining
dense populations are given equal weights to those in sparsely
populated areas. But if the border goes through an unpopulated
area, such as a lake or a public park, then the treatment e!ect
there has little meaning and importance. Furthermore, τ (b) in
these empty areas will have large posterior variances, which will
dominate the posterior variance of τUNIF, potentially jeopar-
dizing the successful detection of otherwise strong treatment
e!ects.
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2.3.2. Density-Weighted
We can address this issue by weighting the treatment e!ect at
each sentinel location by the local population density ρ, that
is, choosing wB(b) = ρ(b). Attractively, the estimand is inter-
pretable as the average treatment e!ect for the superpopulation
of units that live on the border:

τρ = E [YiT − YiC | si ∈ B] . (12)

It therefore better captures the “typical” treatment e!ect received
by a unit than the uniformly weighted estimand. This is the
estimand used by Keele and Titiunik (2015), who themselves
followed in the footsteps of Imbens and Zajonc (2011).

In practice, the local density needs to be estimated. A sim-
ple kernel density estimator can be used, or any spatial point
process model. Strictly speaking, the uncertainty of the local
density estimate should then be propagated to the estimate of
τρ , which may therefore no longer have a normally distributed
or analytically tractable posterior.

Both the uniform and density-weighted estimators are unde-
sirably susceptible to the topology of the border. If a section of
the border has more twists and turns—for example if it follows
the course of a meandering river—then that section will receive
disproportionately more sentinels. These regions will therefore
get disproportionately more weight, purely as an artifact of the
border shape: the more wiggly the border, the more weight,
regardless of the number and placement of actual units in the
region. See Section 3.3 of the supplementary materials for a
simulation demonstrating this susceptibility to border topology.

2.3.3. Inverse-Variance Weighted
The unwelcome dependence of the τUNIF and τρ estimands
on the border topology is a symptom of the geometry of the
GeoRDD: the border treatment e!ect function (2) is de"ned on
a one-dimensional manifold B, which itself is embedded in a
Euclidean two-dimensional space. The dependencies induced
by this geometry are re%ected in the covariance &b1:R|Y : neigh-
boring sentinels on a straight segment of the border will be
less strongly correlated with each other than those on a sinuous
segment. The more correlated sentinels individually carry less
information about the local treatment e!ect. Instead of aver-
aging the posterior treatment e!ect along the border based on
geometry or population, we consider averaging the information
contained therein. This motivates the inverse-variance weighted
mean τ INV:

τ INV | Y , θ ∼ N
(
µτ INV|Y , &τ INV|Y

)
, with

µτ INV|Y =
(

1ᵀR&−1
b1:R|Yµb1:R|Y

) /(
1ᵀR&−1

b1:R|Y 1R
)

and

&τ INV|Y = 1
/ (

1ᵀR&−1
b1:R|Y 1R

)
.

(13)

This estimator e#ciently extracts the information from the
posterior treatment e!ect, as it can be shown to minimize the
posterior variance among weighted averages of the form (7). It
automatically gives more weight to sentinels in dense areas (as
the variance will be lower there), and to sentinels in straight
sections of the border (as the correlations between sentinels will
be lower).

The estimand is still a weighted mean, with weights for the
sentinels given by wB(b1:R) = &−1

b1:R|Y 1R. This can put negative

weights on some sentinels, and this estimand does not lend
itself to an intuitive interpretation. It is not chosen on scien-
ti"c grounds, but rather dictated by the observed data. This is
counter to the conventional approach in causal inference, that
the estimand should be chosen based on substantive grounds,
ideally before collecting any data. While perhaps unorthodox,
analogous “estimands of convenience” have been proposed in
other settings, for example matching methods that exclude some
unmatched units from the analysis (discussed in Crump et al.
2009), or in the context of balancing treatment and control
populations with little overlap in their covariate distributions
(Li, Morgan, and Zaslavsky 2018). Regression adjustment of
multisite trials with "xed e!ects is similarly a precision average
impact estimate (see, e.g., Angrist and Pischke 2008; Miratrix,
Weiss, and Henderson 2020). The 1D RDD could be said to
provide yet another example, as the estimand (1) focuses on the
treatment e!ect near the threshold not because these units are
of particular substantive interest, but because the available data
restricts estimation of the treatment e!ect elsewhere.

2.3.4. Projected Finite Population Weighted
All LATE estimators considered so far presuppose evenly spaced
sentinel points, which are then given weights. Alternatively, we
can project onto the border the treatment and control units
that are within a prechosen distance ( of the border, and use
these projected unit locations without weights (see Figure 2
of the supplementary materials for an illustration). For any
point s, we use the notation projB (s) to give the coordinates
of the point on the border B that is closest to s (assuming
uniqueness), and distB (s) for the distance between the point
and the border. Let I( (s) = I {distB (s) ≤ (} indicate inclusion
in the border vicinity. The projected "nite-population τPROJ is
then the uniformly weighted mean applied with the projected
unit locations instead of the evenly spaced sentinels. We can
therefore modify (11), replacing the cli! height mean vector
µb1:R|Y and covariance matrix &b1:R|Y with their equivalents
obtained at the projected unit locations, to obtain the posterior
mean and covariance of τPROJ:

τPROJ | Y , θ ∼ N
(
µτPROJ|Y , &τPROJ|Y

)
, with

µτPROJ|Y =
n∑

i=1
I( (s)i E

[
τ

(
projB (si)

)
| Y , θ

]

/ n∑

i=1
I( (s)i , and

&τPROJ|Y =

∑n
i=1

∑n
j=1 I( (s)i I( (s)j cov[

τ
(
projB (si)

)
, τ

(
projB

(
sj
))

| Y , θ
]

(∑n
i=1 I( (s)i

)2 .

(14)

The posterior expectations and covariances in (14) are easily
derived and computed analogously to the procedure of Sec-
tion 2.2. Note that τPROJ is in the class of weighted mean
estimands (7), with weight function wB(b) = ∑n

i=1 I( (s)i δ(
b − projB(si)

)
, where δ is the Dirac delta function.

The resulting estimator has desirable properties: densely
populated regions receive proportionately more projected units,
but wigglier segments of the border do not. While it lacks the
information e#ciency of the inverse-variance estimator, the
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Table 1. Summary of local average treatment e!ect estimator and estimand
properties.

Notation Description B topology Sentinels Principle Variance

τUNIF Uniform Sensitive Equispaced Geometry High
τρ Density-weighted Sensitive Equispaced Population Low
τ INV Inverse-var. weighted Robust Equispaced Information Lowest
τPROJ Projected "nite pop. Robust Projected Finite pop. Low
τGEO Proj. land Robust Proj. Grid Geography High
τPOP Proj. superpop. Robust Proj. Grid Population Low

projected estimand is easier to understand and interpret, and
may feel more familiar to practitioners used to "nite-population
inference. The averaging is over the observed units in the vicin-
ity of the border, a$er they have been moved to the nearest point
on the border.

In our experience, the choice of width ( does not have a large
e!ect on the estimate yielded by (14). A reasonable heuristic is
to set ( to a small multiple of the GP lengthscale %. Regardless,
the choice of ( only a!ects the location and density of projected
units on the border; the τPROJ estimator assigns nonzero unit
weights (9) to all units, whether or not they fall within ( of the
border.

2.3.5. Selecting an Estimand
The properties of the four LATE de"nitions proposed in this
article, along with two additional choices presented in Section 3
of the supplementary materials, are summarized in Table 1. In
most applications, we recommend the use of the projected "nite
population or inverse-variance-weighted estimators, to prevent
the undesirable in%uence of border topology. The projected
"nite population method is simplest to understand and interpret
in the tradition of "nite population estimators, and, unlike
the density weighted LATE τρ , it does not require estimating
population density. Meanwhile, the inverse-variance estimator
is the most e#cient (lowest posterior variance) weighted mean
estimator, and sidesteps the choice of a distance cuto! for pro-
jected units.

2.4. Testing for Nonzero E"ect

Once we have obtained the “cli! height” estimate (6) and esti-
mated a LATE, we might also naturally wonder whether we
can claim to have detected a signi"cant treatment e!ect at the
border. In the hypothesis testing framework, we distinguish two
possible choices of null hypotheses: the sharp null speci"es that
the treatment e!ect is zero everywhere along the border, τ (b) =
0 ∀ b ∈ B, whereas the weak null only requires the LATE to
be zero. We focus on a test of the weak null hypothesis here,
but also provide two tests of the sharp null hypothesis based on
the marginal likelihood and a chi-squared statistic in Section 4
of the supplementary materials. We found through simulations
and in our applied example that the test presented in this article
has superior power and robustness to model misspeci"cation,
and therefore recommend its use.

As we saw in Section 2.3, the LATE estimand can be de"ned
in multiple ways. If we choose the inverse-variance weighted
mean, then τ INV has posterior given by (13). While the posterior
is a Bayesian object, we can use it heuristically to derive a

pseudo-p-value p̃INV = 2*(|µτ INV|Y | /√
&τ INV|Y). However,

this pseudo-p-value obtained from the Bayesian posterior may
not have good frequentist properties. In particular, there is no
guarantee that under the null hypothesis, p̃INV is below 0.05 less
than 5% of the time.

To turn it into a valid frequentist test, it can be calibrated
using a parametric bootstrap under the null. We specify a para-
metric null model M0 as a single GP spanning the control and
treatment regions, with the same kernel and hyperparameters
values obtained through the procedure of Section 2.2. Under
M0, the expected outcomes surface is smooth and continuous
at the border, and therefore accords with both the sharp and
weak null hypotheses. We now choose the posterior mean of
the inverse-variance LATE µτ INV|Y as a test statistic. For b =
1, . . . , B iterations, we draw Y(b) from M0, using the same spatial
locations as the original data, and compute µτ INV|Y(b) according
to (13) applied to the simulated data rather than the true data.
The proportion of µτ INV|Y(b) with absolute value greater than the
observed µτ INV|Yobs estimates the p-value:

pINV = p
(∣∣µτ INV|Y

∣∣ ≥
∣∣∣µτ INV|Yobs

∣∣∣ | M0
)

≈ 1
B

B∑

b=1
I
{∣∣∣µτ INV|Y(b)

∣∣∣ ≥
∣∣∣µτ INV|Yobs

∣∣∣
}

. (15)

Computationally, because the hyperparameters and locations of
the units are held constant during the bootstrap, we can reuse
the Cholesky decomposition of the covariance matrix, allowing
the test to be performed in seconds even with hundreds of units
and thousands of bootstrap samples.

The calibration can also be achieved analytically, since
µτ INV|Y is normally distributed under the null hypothesis. We
derive the analytical calibration of hypothesis tests based on any
LATE estimand in Appendix B. Note that the p-value for this test
is derived under the parametric null model M0, which accords
with both the sharp null and weak null hypotheses, but is not the
only possible model that satis"es the weak null. The calibrated
inverse-variance test “targets” the weak null hypothesis in the
sense that the test statistic is an estimate of the LATE, and thus
the test is sensitive to deviations of the LATE from zero, rather
than its p-value being derived directly under the weak null (such
as the classical t-test).

2.4.1. Placebo Tests
GP models are almost always misspeci"ed. We do not believe
that the GP with stationary Matérn kernel is the true data-
generating process, although we hope that the model is su#-
ciently %exible to represent reality well. Under misspeci"cation,
we should be skeptical of results that rely on the truth of the
model speci"cation. We therefore encourage practitioners to
probe the validity of the hypothesis test by running a “placebo”
test. A placebo test repeatedly applies the hypothesis test on data
that are known to have zero treatment e!ect (a “placebo”), to
verify that the returned p-values are uniformly distributed. In
our spatial setting, we use the treatment and control regions
separately as placebo groups. Within each placebo group, we
repeatedly draw an arbitrary geographical border, creating new
treatment and control groups. Here, we drew lines that split the
placebo units in half at a sequence of angles 1◦, 2◦, 3◦, . . . , 180◦
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Figure 1. Map of property sales in New York City along with estimated pairwise border impacts. Each dot is a sale, and its color indicates the price per square foot. White
indicate sales with missing square footage. All pairwise estimates of the inverse variance LATE between adjacent school districts shown by the orange and blue bu!ers
along their borders, with the thickness of the orange bu!er proportional to the posterior mean, and the blue beyond it proportional to the posterior standard deviation.
All bu!ers drawn on the side estimated to have higher house prices. Each district is labeled by its number.

counter-clockwise from horizontal, each positioned so that half
of the units fall on either side of the line to maximize power.
Because the borders are drawn arbitrarily, without reference to
the outcomes, we should not expect to observe a discontinuous
jump in outcomes. We apply the calibrated inverse-variance test
procedure described above to the data arbitrarily divided by
each placebo border, and hope to obtain a roughly uniform dis-
tribution of p-values. The placebo p-values are highly correlated,
resulting in a small e!ective sample size, but this procedure
nonetheless allows us to visually verify that the p-values are not
blatantly biased. Gibbons, Machin, and Silva (2013) performed
a falsi"cation test that is similar in spirit to our procedure. They
shi$ the locations of the housing transactions 10 km North and
East, and show that their matching method, unlike OLS, no
longer yields a signi"cant estimate of the e!ect of school quality
on house prices.

3. Valuing NYC School Districts

We now turn to our NYC public schools application that
we discussed in Section 1. Speci"cally, we will use our
methodology to study the e!ect of school districts on house
prices in NYC. The city publishes information pertaining
to property sales within the city in annualized datasets,
available at https://www1.nyc.gov/site/!nance/taxes/property-
annualized-sales-update.page, and in this section we focus on
the 2015 dataset. The dataset includes columns for the sale price,
building class, and the address of the property. Public schools
in the city are all part of the City School District of the City
of New York, but the city-wide district is itself divided into
32 subdistricts. It is a common belief that school districts have
an impact on real estate price, as parents are willing to pay more
to live in districts with better schools. We therefore ask whether

we can measure a discontinuous jump in house prices across the
borders separating school districts.

We "rst geocode the address of each sale by merging the
sales with the NYC Department of Finance’s Digital Tax Map,
which contains X and Y coordinates for the centroid of every
parcel in NYC, identi"ed by its borough, zip code, block, and lot.
These coordinates are given in the EPSG:2263 projection, which
we also adopt. Details and code for this preprocessing step are
available from the "rst author’s GitHub account.

We then "lter the 83,441 sales by removing (i) 51,741 sales
outside of the family homes building class categories (one, two,
and three family dwellings), (ii) 11,141 remaining properties
without a reported sale price, (iii) 62 remaining sales missing the
square footage information, (iv) 76 remaining properties which
could not be geocoded, and (v) 905 remaining sales with outlier
log price per square foot less than 3 or more than 8. We exclude
condos and coops because only very few sales report square
footage alongside the price. The resulting dataset of 19,516 sales
is displayed in Figure 1. The 33,331 residential properties with
missing square footage information are also shown; these are
almost all coops and condos, which explains the clustering of
missing data in areas of higher density.

3.1. Model for Property Prices

Our application relates to the economics literature on valuing
school quality (Black and Machin 2011), based on the hedonic
valuation model (Rosen 1974; Sheppard 1999) which typically
takes the form of a linear model for the log of the sale price p
of a property at location s (see, e.g., Gibbons, Machin, and Silva
2013):

p = s(s)β + x(s)γ + g(s) + ε , (16)

https://www1.nyc.gov/site/finance/taxes/property-annualized-sales-update.page
https://www1.nyc.gov/site/finance/taxes/property-annualized-sales-update.page
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where s(s) is the expected quality of the schools that residents
near s can access, x is a set of observed property and neighbor-
hood covariates, g(s) captures spatially correlated unobserved
covariates, and ε represents unobserved characteristics of the
property and errors that are independent of x and s. “School
quality” is variously de"ned and estimated (Black and Machin
2011): average standardized test scores, survey responses, fund-
ing levels, pass rates, publicly, etc.

Most research focuses on estimating β , the e!ect of a unit of
school quality on the log-price, while addressing confounding
due to g(s). Imagine moving a property sale an in"nitesimal
distance from one side of the border to the other; the di!erence
in prices is then:

((p) = ((s(s)β) + ((x(s)γ ) + (g(s) + (ε . (17)

The last three terms on the right-hand-side equal zero: the
property has not changed, and x and g are assumed smooth
and continuous, so only the change in attendance districts can
explain the change in price. The GeoRDD uses this idea to
identify ((s(s)β), the jump in price attributable to the di!erence
between school districts. However, to estimate β , the hedonic
model requires the further assumptions that school quality is
well-de"ned and measured, and that its e!ect on log-prices is
linear and constant. In this article, we avoid these assumptions
by seeking to directly estimate the jump in prices at the border,
without attempting to attribute the jump to a speci"c measure
of school quality.

In our application, the outcome of interest is price per square
foot of a property sale. As is commonly done in analyses of
real estate prices, we take its logarithm to reduce the skew in
the outcomes. The complete model is then a GP within each
district (indexed by j = 1, . . . , JDistr) over the spatial covari-
ates s, super-imposed with a linear regression on the property
covariates (which are LBuildClass building categories encoded
as dummy variables):

Yi = mDistr[i] + γBuildClass[i] + fDistr[i](si) + εi ,

εi
⊥⊥∼ N

(
0, σ 2

ε

)
,

γl ∼ N
(

0, σ 2
γ

)
,

for l = 1, . . . , LBuildClass ,
mj ∼ N

(
0, σ 2

m
)

, fj ∼ GP
(
0, k(s, s′)

)
,

for j = 1, . . . , JDistr,

(18)

where k is the Matérn covariance function as in (3).
A visual inspection of the house sales map in Figure 1 initially

drew our attention toward the border between districts 19 and
27, which we arbitrarily designate as “treatment” and “control,”
respectively. Importantly, the border between the two districts
is also part of the border between Brooklyn and Queens. This
is an instance of what Keele and Titiunik (2015) termed “com-
pound treatments,” a frequent concern in GeoRDDs. There-
fore, we are measuring a discontinuity in the house prices at
the border, but attributing the discontinuity to a particular
cause (school district or borough) is not directly supported by
the data.

Another concern is units sorting around the border, which
would violate the identi"cation assumptions for GeoRDDs.

We take the view that the unit of analysis here is the tract of land
on which houses are built, rather than the residents themselves.
If a district becomes more attractive, people may move to it,
whereas land does not move but its price adjusts. A sale gives
a snapshot of the price of the land; this snapshot is made more
accurate by correcting for covariates that pertain to the building
rather than land.

3.2. Cli" Height Estimator

We "t the hyperparameters σγ , σGP, %, and σε by optimizing the
marginal log-likelihood of the data within neighboring school
districts 18, 19, 23, 24, 25, 26, 27, 28, and 29. We hold σm "xed
to 20 to give the district means mj a weak prior. The "tted
hyperparameters were σ̂ε = 0.40, σ̂GP = 0.29, σ̂γ = 0.14, and
%̂ = 5.7 km.

We seek to estimate the treatment e!ect function τ on the
border between the two districts, adjusting for measured build-
ing and site characteristics. We could proceed by computing
the cli! height estimator with covariates (5). But to simplify the
analysis we instead residualize the prices by estimating γ and
obtaining residuals Y − Xγ̂ . We then treat these residuals as the
observed outcomes in a GeoRDD analysis with no nonspatial
covariates. In our context, the posterior variance of γ is low,
and therefore the two approaches yield very similar results, but
conditioning on the estimate of γ is computationally conve-
nient. See Section 2 of the supplementary materials for further
details.

Following the inference procedure outlined in Section 2.1,
we obtain the posterior distribution of the cli! height τ (b1:R)

obtained at R = 100 sentinel locations evenly spaced along the
border. The cli! height is shown in Figure 2, and shows that
τ is estimated as negative everywhere along the border, which
corresponds to higher property prices in district 27. However,
the credible envelope is fairly wide, especially in the southern
section of the border, so we cannot visually rule out the null
hypothesis that τ = 0.

3.3. Average Log-Price Increase

The cli! height Figure 2 shows a negative treatment e!ect every-
where along the border, which can be averaged by the estimators
we developed in Section 2.3. Our two recommended estima-
tors, based on inverse-variance weighting and "nite-population
projection of units within ( = % of the border, yield LATE
estimates of −0.22 and −0.18, respectively, which corresponds
to a roughly 20% increase in property prices going from district
19 to district 27. By contrast, treating each district and building
class as a "xed e!ect in an OLS model yields a treatment e!ect
estimate (the di!erence between the district 19 and 27 coe#-
cients) of −0.12. This smaller estimate could be explained by
an overall East to West positive spatial trend in prices, visible
between districts 29 and 15 in Figure 1, which would confound
the OLS estimate of the treatment e!ect. All LATE estimators
from Section 2.3 applied to this setting are shown in Table 2.
In this example, the di!erent estimators yield similar answers,
as the border is fairly straight and short relative to the "tted
lengthscale.
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Figure 2. (a) Cli! height estimator (6) for the school district e!ect on house prices per square foot between district 27 and district 19, with 95% credible envelope. The left
y-axis shows the di!erence in log prices per square foot; positive values mean prices are higher in district 19. The right y-axis shows the corresponding ratio of the price of
a house in district 19 over its price in district 27. A few draws from the posterior are shown in lighter color to show the posterior correlations between sentinels. Note the
decorrelation from sentinels 6 to 7, and 19 to 20, where the border crosses the water between sparsely populated islands in Jamaica Bay and then onto Long Island. (b)
A map of sentinel locations, evenly spaced along the border between school districts 27 and 19 (skipping regions of water). The southernmost sentinel (shown as a blue
circle in both plots) has index 1, while the northernmost sentinel (shown in yellow) has index 100.

Table 2. Average di!erence in log price per square foot between school districts
19 and 27.

Posterior

Estimand Mean SD Tail prob.

τUNIF −0.16 0.10 5.25%
τρ −0.22 0.07 0.04%
τ INV −0.22 0.06 0.04%
τPROJ −0.18 0.09 2.04%
τGEO −0.11 0.15 22.24%
τPOP −0.18 0.08 1.03%

NOTE: For each LATE estimand, we show the mean and standard deviation of its
posterior distribution, and the tail probability p(τ > 0 | Y , γ̂ , θ). Negative LATEs
correspond to district 27 being more expensive.

3.4. Signi!cant Di"erence in Price?

The estimated inverse-variance weighted mean treatment e!ect
is suggestive of a signi"cant treatment e!ect. But the posterior
tail probability cannot be interpreted as a p-value. For this, we
turn to the test developed in Section 2.4, which yields a p-value
of pINV = 0.003, thus rejecting the null hypothesis that there is
no di!erence in house prices at the border between districts 19
and 27.

To assess the validity of the test, we apply the placebo tests
devised in Section 2.4.1. Within each district, we split the data
in half by a line at angles 1◦, 3◦, 5◦, . . . , 179◦. Because these
lines were drawn arbitrarily, we do not expect a discontinuous
treatment e!ect between the two halves, and so we hope to
see a uniform distribution of placebo p-values. However, these
tests will be highly correlated—there is in fact a noticeable
autocorrelation in the graph of the placebo p-value as a function

of angle (see Section 5 of the supplementary materials)—and
so the low e!ective sample size could lead to some apparent
departures from uniformity. Nonetheless, our placebo test gives
a roughly uniform distribution of p-values, which therefore does
not discredit the calibrated inverse-variance test, and con"rms
the signi"cance of the di!erence in price at the border between
the two districts. See Section 5 of the supplementary materials
for further discussion, as well as the results of the placebo test
applied to the other testing approaches.

3.5. Extending to All Borders

Our GeoRDD analysis can be repeated for each pair of adjacent
districts. Figure 1 gives an overview of the results by showing the
posterior mean and standard deviation of the inverse variance
LATE estimated at each border. See Table 5 of the supplementary
materials for a table of numerical results. Signi"cant e!ects
are found between many districts, but interpreting the results
requires some caution. We have already mentioned the issue of
compound treatments for borders between school districts that
overlap with the border between boroughs. In particular, school
districts 19, 32, and 14 are in Brooklyn, while districts 30, 24,
and 27 are in Queens.

Some school districts are separated by parks (or other non-
residential zones), for example districts 15 & 17 or 19 & 24,
so that house sales do not extend all the way to the border
on one or both sides. A signi"cant treatment e!ect between
these pairs cannot be interpreted as the detection of a discon-
tinuity in prices at the border, let alone any kind of causal
interpretation, but rather it means that the di!erence in prices



10 M. RISCHARD ET AL.

between the two sides of the park exceeds the typical spatial
variation of house prices expected over the same distance. This
is not surprising, and one may speculate that physical barri-
ers like parks, rivers, railways and major roads can separate
neighborhoods with distinct character, demographics and thus
house prices. This in turn challenges the stationarity assump-
tion of the spatial model (3). The higher distance between
data and the border also stretches the spatial model’s abil-
ity to extrapolate, which makes it more vulnerable to model
misspeci"cation.

Other pairs of district (e.g., 13 & 14, 13 & 17, and 25 & 28)
have clusters of missing data (condo sales with unknown square
footage) near the border that cast doubt on the interpretation
of the estimated e!ect. Nonetheless, signi"cant e!ects are also
found between pairs of school districts without issues due to
compound treatments, physical barriers, or missing data. House
prices increase going across the border from districts 23 to 17,
28 to 29, 29 to 26. The results also show an increase in price
at the border from 24 to 28, but this could be confounded by
gaps in the sales data due to Forest Park, St. John Cemetery
and condos near Queens Blvd. Also note that we report com-
parisons between 40 pairs of districts, so some false positives
would be expected at the 5% signi"cance level. Overall, it seems
that school district borders in Brooklyn and Queens can cor-
respond to measurable jumps in house prices per square foot.
The estimated size of this e!ect varies: zero or negligible in
some cases, such as between districts 15, 20, 21, and 22; and
quite pronounced in others, such as a 17% price increase from
29 to 26.

4. Discussion

The aim of this article was to estimate the shi$ in house prices
across school districts borders in NYC. Measuring the e!ect
of school quality on house prices has a long history in eco-
nomics, but most existing methods are vulnerable to unob-
served factors—such as neighborhood characteristics—that are
correlated with school quality and house prices and thus con-
found causal e!ects. For our application, an e!ective way to
identify our causal e!ects of interest was to frame the application
as a GeoRDD and take advantage of methods from the spatial
statistics literature to account for spatially varying unobserved
factors.

GeoRDDs arise when a treatment is assigned to one region
but not to an adjacent region. In our application, “treatment” can
be de"ned as one school district and “control” can be de"ned as
an adjacent school district, thus forming a GeoRDD, where the
geographic boundary between districts constitutes the threshold
in the RDD. Under smoothness assumptions, houses adjacent to
the border are comparable, and form a natural experiment. The
same idea underpins causal interpretations of one-dimensional
regression discontinuity designs (1D RDDs), where a single
“forcing” variable controls the treatment assignment instead
of a border separating two geographical regions. We use this
similarity to motivate a framework for the analysis of GeoRDDs,
which proceeds in three steps: (i) "t a smooth surface on either
side of the border, (ii) extrapolate the surfaces to the border, and
(iii) take the di!erence of the two extrapolations to estimate the
treatment e!ect along the border.

In this article, we emphasize the importance of the spatial
aspect of the design, and therefore draw from the spatial statis-
tics literature, which brings a rich set of tools designed to model
and exploit spatial correlations. We used GPR (kriging) to "t the
smooth surfaces to the outcomes in step (i) of our framework.
Our approach yields a multivariate normal posterior distribu-
tion of the treatment e!ect for a collection of “sentinel” locations
along the border.

We investigated, using a publicly available dataset of one
year of NYC property sales, whether school districts can explain
systematic di!erences in property prices. Initially focusing on
a single border, we estimated a roughly 20% average increase
in house prices per square foot when crossing the border from
district 19 to district 27. In contrast to the literature on valuing
school quality through house prices, our focus is on inferring the
discontinuity in house prices at the border, without attempting
to attribute it to a di!erence in a measured metrics of school
quality. In our case, the border between these two districts is
also the border between the NYC boroughs of Brooklyn and
Queens, so we cannot attribute this di!erence to the causal e!ect
of the school districts. Across all the borders, we see that physical
barriers like parks, commercial zones, railways, and major roads
can separate neighborhoods. This keeps data away from the
borders, breaks the stationarity assumption of the spatial model,
and increases the extent of extrapolation performed by the
model, which casts doubt on the legitimacy of the estimated
treatment e!ects. Nonetheless, we do "nd signi"cant e!ects
in several pairs of school districts without such confounding
factors.

We also found that averaging the treatment e!ect along a
border has surprising pitfalls. Simply integrating the treatment
e!ect uniformly along the border yields an estimand that is inef-
"cient and undesirably sensitive to the topology of the border.
We therefore use more sophisticated estimands, summarized in
Table 1, that are robust to this e!ect, and use the information
available in the data more e#ciently.

To test against the null hypothesis of zero treatment e!ect
along the border, we had to develop a test based on the posterior
distribution of the LATE. We use the inverse-variance weighted
LATE to attain high power, but the other LATE estimates of
Section 2.3 could be used similarly. To ensure good frequen-
tist properties we “calibrate” the test, obtaining its distribution
under the null model, either using a parametric bootstrap or
analytically.

While our framework is intuitive and well-motivated by the
1D RDD literature, it does have drawbacks. It does not specify a
prior directly on the treatment e!ect along the border; instead it
can be shown that our GP model implicitly gives it a wide prior
for a constant e!ect plus a GP prior with double the covariance
function k in (3). Such a wide prior can lead to regularization
induced confounding (RIC) as de"ned and demonstrated by
Hahn, Murray, and Carvalho (2017) and Hahn et al. (2018). RIC
can be understood as the tendency of a Bayesian or regularized
model to recruit a treatment e!ect variable that has a weak prior
to explain away a more strongly regularized trend in the control
variables. The calibration of the p-values in Section 2.4 safe-
guards the validity of our proposed hypothesis tests—further
validated by placebo tests—but RIC could bias the cli!-face
and LATE estimates. Unfortunately Hahn et al.’s solution of "rst
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regressing the treatment variable on control variables (spatial
covariates in GeoRDDs) to estimate the propensity score cannot
be used: the assumption of overlap (Hahn, Murray, and Car-
valho 2017, eq. (2)) is violated, because the propensity scores are
known to be 0 or 1 in the control and treatment regions, respec-
tively. That said, it could be bene"cial to place a direct prior
on the treatment e!ect; this could for example be accomplished
by specifying a baseline smooth spatial process that spans both
regions, and an independent treatment e!ect surface with lower
prior variance that also spans both regions but is multiplied
by 0.5 in the treatment region and −0.5 in the control region.
We hope that our work will encourage further exploration of
this and other Bayesian nonparametric model speci"cations for
GeoRDDs.

Another limitation of our approach to GeoRDDs is the
reliance on modeling assumptions. We modeled the response
surfaces as two independent GPs, with iid normal noise for
each observation. As is common in spatial statistics, we use
GPR as a nonparametric smoothing device that %exibly cap-
tures spatial correlations, but do not claim that our model is
a true representation of the stochastic mechanism generating
the data. We believe care must therefore be taken not to lean
heavily on modeling assumptions. In particular, we recommend
that hypothesis tests always be accompanied by placebo tests:
by applying the same procedure with arbitrary borders where
no treatment was applied, we can verify that the test behaves
appropriately under the null hypothesis, despite any potential
model misspeci"cation.

Because of the need to extrapolate the "tted processes a short
distance to the border, our GeoRDD method may be vulnerable
to the limitations of GPs when extrapolating. The distinction
between interpolation and extrapolation of spatial models is
explored in some depth in Stein (2012). We expect that method-
ological advances that improve the extrapolating behavior of
GPs would also improve the robustness of our method. For
example, Wilson and Adams (2013) developed spectral mix-
ture (SM) covariance kernels with good extrapolating behavior.
These could be applied bene"cially to GeoRDDs. However, SM
kernels are motivated by time series with some periodic or oscil-
latory behavior, which is more unusual in spatial applications,
and may therefore not be as well-suited for use with GeoRDDs.

The use of GPR to analyze GeoRDDs gives %exibility and
extensibility to the method. This presents many opportunities
for future research, inspired by the past and future development
of methods in spatial statistics and machine learning that are
based on GPs. Banerjee, Carlin, and Gelfand (2014) provided
a good introduction to the richness of the spatial statistics
"eld. For example, if the outcomes are binary, proportions, or
counts, then binomial or Poisson likelihoods could be substi-
tuted instead of the normal likelihood used in this article.

Furthermore, in some applications, it may be of substantive
interest to know whether the treatment e!ect is constant (homo-
geneous) or variable (heterogeneous). Hypothesis tests targeting
the homogeneity of the treatment e!ect along the border would
be an interesting possible extension of our framework.

The framework and techniques of this article could also be
extended to spatio-temporal settings. If the treatment is only
applied to the treatment region a$er a time t∗, one could envi-
sion a three-dimensional RDD consisting of the geographical

Table A.1. Shorthand notation for covariance matrices.

Symbol Size ijth entry

KBB R × R σ 2
m + k

(
bi , bj

)

KBT R × nT σ 2
m + k

(
bi , sjT

)

KBC R × nC σ 2
m + k

(
bi , sjC

)

KTT nT × nT σ 2
m + k

(
siC , sjC

)

KCC nC × nC σ 2
m + k

(
siT , sjT

)

&TT nT × nT σ 2
m + k

(
siT , sjT

)
+ δijσ

2
ε

&CC nC × nC σ 2
m + k

(
siC , sjC

)
+ δijσ

2
ε

NOTE: The spatial coordinates of the ith treatment unit are denoted by siT , and those
of the jth control unit by sjC , while bi denotes the ith sentinel location along the
border.

border in the spatial dimensions, and a straight line through
t∗ in the temporal dimension. We leave spatio-temporal RDDs
using GP models to future research.

The calibrated inverse-variance test of Section 2.4 is the special case
of this procedure with weights wB(b1:R) = &−1

b1:R|Y 1R.

Appendix A: Covariances for Gaussian Process Model

All covariances below are conditional on the hyperparameters θ =
(%, σGP, σε , σm), omitted for concision. We further de"ne some short-
hand notation, found in Table A.1.

mT , mC ∼ N
(

0, σ 2
m

)
,

cov(YiT , mT) = cov(YiC , mC) = σ 2
m,

cov(YiT , mC) = cov(YiC , mT) = 0,
cov

(
YiT , fT(s′)

)
= cov

(
YiC , fC(s′)

)
= k(si, s′),

cov
(
YiT , fC(s′)

)
= cov

(
YiC , fT(s′)

)
= 0,

cov(YiT , YjT) = cov(YiC , YjC) = σ 2
m + k(si, sj) + δijσ

2
ε ,

cov(YiT , YjC) = 0.

(A.1)

Appendix B: Calibration of Inverse-Variance Test

We seek to obtain a valid hypothesis test against the null hypothesis of
zero treatment e!ect everywhere along the border by using the inverse-
variance weighted LATE estimate (13) as a test statistic.

Under the parametric null hypothesis M0, YT and YC are drawn
from a single GP, with no discontinuity at the border. Their joint
covariance is

cov
((

YT
YC

)
| M0

)
=

[
&TT KTC
Kᵀ

TC &CC

]
, (B.1)

where KTC is the nT × nC matrix with ijth entry equal to k
(
siT , sjC

)
.

The predicted mean outcomes (5) at the sentinels µb1:R|T and µb1:R|T
are obtained by le$-multiplying YT and YC by matrices WT and WC
(respectively) that are deterministic functions of the unit locations and
the hyperparameters:

WT = KBT&−1
TT and WC = KBC&−1

CC . (B.2)

Under M0, the joint distribution of µb1:R|T and µb1:R|T is con-
sequently also multivariate normal with mean zero and covariance
given by

cov
((

WTYT
WCYC

)
| M0

)
=

[
WT&TTWᵀ

T WTKTCWᵀ
C

WCKᵀ
TCWᵀ

T WC&CCWᵀ
C

]
. (B.3)
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Continuing in this fashion, the cli! height (6) estimate µb1:R|Y =
WTYT − WCYC is yet another zero-mean multivariate normal with
covariance given by

cov
(
µb1:R|Y | M0

)
= WT&TTWᵀ

T + WC&CCWᵀ
C

− WTKTCWᵀ
C − WCKᵀ

TCWᵀ
T . (B.4)

Weighted LATE estimators of the form de"ned in (8) are linear
transformations of µb1:R|Y and so under M0, they are normally dis-
tributed with mean zero. For a given weight function wB , its variance
is given by

var
(
µτw|Y | M0

)
= cov

(wB(b1:R)ᵀµb1:R|Y
wB(b1:R)ᵀ1R

)

=
wB(b1:R)ᵀcov

(
µb1:R|Y

)
wB(b1:R)

(wB(b1:R)ᵀ1R)2 . (B.5)

The p-value follows from treating the LATE estimate as a test
statistic. Under the null hypothesis, the probability of µτw|Y exceeding
in magnitude its observed value µτw|Yobs is

p
(∣∣µτw|Y

∣∣ ≥
∣∣∣µτw|Yobs

∣∣∣ | M0
)

= 2*
(
−

∣∣∣µτw|Yobs

∣∣∣
/√

var(µτw|Y | M0)
)

. (B.6)

The calibrated inverse-variance test of Section 2.4 is the special case of
this procedure with weights wB(b1:R) = &−1

b1:R|Y 1R.
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(1) Why the Projected 1D RDD Approach Can Lead to Spatial Confound-
ing, (2) Handling Nonspatial Covariates, (3) Additional LATE Estimands
and Simulations, (4) Alternate Tests for Non-Zero Treatment E!ect, and
(5) Additional Testing Details for NYC School Districts Application.
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