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In this paper we model basketball plays as episodes from team-specific
nonstationary Markov decision processes (MDPs) with shot clock depen-
dent transition probabilities. Bayesian hierarchical models are employed in
the modeling and parametrization of the transition probabilities to borrow
strength across players and through time. To enable computational feasi-
bility, we combine lineup-specific MDPs into team-average MDPs using a
novel transition weighting scheme. Specifically, we derive the dynamics of
the team-average process such that the expected transition count for an ar-
bitrary state-pair is equal to the weighted sum of the expected counts of the
separate lineup-specific MDPs.

We then utilize these nonstationary MDPs in the creation of a basket-
ball play simulator with uncertainty propagated via posterior samples of the
model components. After calibration, we simulate seasons both on-policy and
under altered policies and explore the net changes in efficiency and produc-
tion under the alternate policies. Additionally, we discuss the game-theoretic
ramifications of testing alternative decision policies.

1. Introduction. A basketball game can be framed as a collection of episodes from com-
plex stochastic processes. Each episode, or play, is comprised of a finite number of transitions
between players and locations ultimately terminating in a shot, turnover or foul. An integral
attribute of the game is that it is nonstationary; the transition probabilities are not constant
over the 24 seconds in which a team has to shoot the ball. For example, consider the relation-
ship between time on the shot clock, which counts down these 24 seconds, and the probability
of taking a shot as shown in Figure 1 for the National Basketball Association (NBA) 2015-16
regular season. The plot in panel (b) shows empirical league-average shot policies, which we
define as the probability that any on-ball event (i.e., dribbles, passes and shots) will be a shot,
for the set of court regions defined in panel (a). As the shot clock counts down, the probability
of shooting increases—quite dramatically in the final seconds of the shot clock.

Determining optimal policies for player shooting is a critical problem in the game of bas-
ketball, and it remains an active area of research (Skinner and Goldman (2017), Goldman
and Rao (2014a)). However, the inherent nonstationarity introduced by the shot clock makes
assessing shot selection optimality a complex problem. In this project we propose a method
to test and to compare shot policies which accounts for the dynamic nature of a basketball
play. Two critical assumptions underlying our approach are that shot policies are both time-
varying and malleable. Basketball analysts often focus on the less flexible component of shot
efficiency—field goal percentage (i.e., the percentage of a player’s shots that he makes). Im-
proving shooting skill can take years of practice, whereas the shot policy is comparatively
controllable; players choose where and how often they shoot when they have the ball in their
possession.
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FIG. 1. (a) Breakdown of court locations as used in our models and simulations. Rim: Within a six-foot radius
of the center of the hoop; Paint: Outside the restricted area but within the key; Midrange: Outside of the paint but
within the 3-point line; Corner 3: Beyond the 3-point line but below the break of the 3-point arc; Arc 3: Beyond
the 3-point line, above the arc 3 break but within 30 feet of the hoop; Backcourt: All locations beyond the arc
3 region. (b) Empirical league-average shot policies for the 2015–16 NBA regular season. We see lower shot
probabilities in the midrange and arc 3 regions because the on-ball events in these regions are dominated by
passes and dribbles.

Given the malleable nature of shot policies, we explore what could have happened if a
player’s shot policy had changed. To enable this exploration, we model plays as episodes
from latent Markov decision processes (MDPs) with dynamic within-episode transition prob-
abilities. We approximate these functional transition probabilities, via transition probability
tensors (TPTs), then estimate the latent components of the MDP using Bayesian hierarchi-
cal models. Our method involves combining several Markov chains with overlapping state
spaces into an average Markov chain, which we derive subject to the constraint that the ex-
pected total transition count for an arbitrary state-pair is equal to the weighted sum of the
expected counts of the separate chains.

We then develop a method to simulate from these processes not simply by outcome but
rather at the subsecond level, incorporating every intermediary and terminal on-ball event
over the course of a play. The uncertainty in our estimation of the MDP gets propagated
into the simulations via posterior samples of the MDP model. Ultimately, our method allows
us to make distributional estimates of counter-factual scenarios such as, “What could have
happened if a team took contested midrange shots less frequently early in the shot clock?”
While we focus primarily on shot policies in this paper, narrowing in on a player’s choice to
shoot or not at any given instant, the framework presented here can be altered to accommodate
the whole space of decisions players can make on-ball, including movement and passing.

1.1. Related work and contributions. This paper adds to the growing literature of spa-
tiotemporal analyses of team invasion sports (e.g., basketball, football, soccer and hockey).
We refer the reader to Gudmundsson and Horton (2017) for a survey. Within this body of
work, Markov models have significant presence: Goldner (2012) uses a Markov model as a
framework for evaluating plays in American football; Hirotsu and Wright (2002) use Markov
processes to determine optimal substitution patterns in an English Premier League match;
and Thomas et al. (2013) use a semi-Markov process to model team scoring rates in hockey.

The landmark work of Cervone et al. (2016) is particularly relevant to the methods we
introduce in this paper. The state space and hierarchical models we develop have similarities
to the coarsened possession process they employ. However, our ultimate goals are fundamen-
tally different. Cervone et al. (2016) aim to estimate instantaneous point values of possessions
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whereas we utilize a decision process framework to estimate the macro effects if player deci-
sions were to change.

We approach the problem similarly to Routley (2015), who applies a Markov game formal-
ism to value player actions in hockey, incorporating context and a lookahead window in time.
As in Routley (2015), we do not aim to compute optimal strategies. Instead, we provide a bas-
ketball play simulator by which alternate policies can be explored. Since the defense is not
an adversarial agent in our model but is built into the system via the probabilistic components
of the MDP, this simulator is proposed as an exploratory tool as opposed to a mechanism to
compute policy optima.

Several papers have endeavored to simulate a basketball game using Markov models
(Štrumbelj and Vračar (2012), Vračar, Štrumbelj and Kononenko (2016)). Our simulator is
unique among these studies in a number of ways. We account for the uncertainty in every
estimated parameter, propagating this uncertainty through to the simulations. Also, though
Vračar, Štrumbelj and Kononenko (2016) incorporate game-clock time, these simulation
methods do not account for the inherent nonstationarity within a possession introduced by
the shot clock. We propose a novel method to account for the nonstationarity of basketball
plays using tensors in the MDP framework. By incorporating this dependency in our model,
we can explore far more detailed policy changes with correspondingly more accurate results,
particularly with respect to shot clock violations and time-specific policy changes within
plays.

This work also contributes to the literature and practical application of discrete absorbing
Markov chains. We formalize a method to construct and estimate an average chain from
several independent Markov chains with overlapping state spaces. The term “average,” as
used here, refers to a chain that yields the same number of state-to-state transition counts in
expectation for all unique state pairs spanned by the set of independent chains. This allows us
to reliably estimate aggregate counts across the system of chains without having to estimate
each chain individually. This result is critical in making our method both parsimonious and
computationally feasible.

1.2. Description of data. We use high-resolution optical tracking data collected by
STATS LLC from the 2015–2016 NBA regular season. These data include the x, y coor-
dinates of all 10 players on the court and the x, y, z coordinates of the ball at a frequency
of 25 observations per second. These data are further annotated with features such as shots,
passes, dribbles, fouls, etc. For this project we subset the data to observations with tagged
ball-events, including dribbles, passes, rebounds, turnovers and shots. This significantly re-
duces the number of observations while retaining the core structure of a possession. The
Supplementary Material provides a simplified walkthrough in R of the methods presented in
this paper and one game of data provided by STATS LLC (Sandholtz and Bornn (2020)).

1.3. Outline. The rest of the paper is outlined as follows: In Section 2 we give a brief
overview of Markov decision processes and describe how we incorporate tensors in the
framework of an MDP. We also detail the construction of an average chain from several
independent Markov chains with overlapping state spaces. In Section 3 we define probabilis-
tic models for each latent component of the MDP. The inference procedures used in fitting
the models are detailed, and we illustrate the model fits. In Section 4 we describe how we
simulate plays from team-specific MDPs and show calibration results from our simulations.
In Section 5 we show the results of our simulations under various altered policies and discuss
potential game-theoretic ramifications of altering policies. Our concluding remarks comprise
Section 6.
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2. Decision process framework. We begin this section with a brief overview of Markov
decision processes and frame the process in basketball terms. Next, we show how to construct
an average chain from several independent Markov chains with overlapping state spaces. The
section concludes with our framework for incorporating tensors into the transition dynamics
and action policies in order to account for the nonstationarity of these probabilities in time.

2.1. Markov decision processes. Markov decision processes are utilized in many modern
reinforcement learning problems to characterize interactions between an agent and his envi-
ronment. In this paper we restrict our attention to finite MDPs, which can be represented as a
tuple: 〈S,A,P (·),R(·)〉, where S represents a discrete and finite set of states, A represents a
finite set of actions the agent can take, P(·) defines the transition probabilities between states
and R(·) defines the immediate reward the agent receives for any given state/action pair. The
agent operates in the environment according to a policy, π(·) which defines the probabilities
that govern the agent’s choice of action based on the current state of the environment. π(·)
is the only aspect of the system that the agent controls. Typically, the agent’s goal is to max-
imize their long-term rewards by making iterative modifications to their policy based on the
rewards they receive.

We can define these functions succinctly in mathematical terms:

P
(
s, a, s′) = P

[
Sn+1 = s′ | Sn = s,An = a

]
,(2.1)

R(s, a) = E[Rn+1 | Sn = s,An = a],(2.2)

π(s, a) = P[An = a | Sn = s].(2.3)

In (2.1)–(2.3), nonitalicized uppercase letters (e.g., Sn,An and Rn+1) represent random vari-
ables while italicized lowercase letters represent realized values of the corresponding random
variables. Specifically, Sn represents the agent’s state in step n of an episode from the MDP,
An represents the action taken in that step and Rn+1 is the subsequent reward given that
state-action pair.

For our basketball context, we define an episode as the sequence of events comprising a
single play from start to finish. A play is initialized in some state s0, and π(·) determines the
probability that the ball handler takes a shot (or other actions, as we explore later) given that
state. If he decides not to shoot, P(·) governs the probability of the ball entering any other
state given the current state. If he does take a shot, R(·) dictates the expected point value
of that shot. Figure 9 in Appendix A.1 shows a graph of these relationships in context of a
basketball play. In our case the governing probabilities are unobserved for each of these com-
ponents and, hence, must be estimated. We refer the reader to Sutton and Barto (2018) and
Puterman (2014) for a more expansive introduction to reinforcement learning and Markov
decision processes.

2.2. State and action space. Following Cervone et al. (2016), at any given moment the
state of a team’s MDP is given by the identity of the ball handler, his court region and an
indicator of his defensive pressure (open or contested). Formally, S team is defined by the
Cartesian product of three sets,

S team = Splayer × Sregion × Sdefense,(2.4)

where Splayer is the set of all players on the team’s roster, Sregion comprises the six regions
shown in Figure 1(b) and defensive pressure is binary (“open” or “contested”). At any given
moment n of a play, Splayer

n is determined by the ball handler, Sregion
n is a function of his x, y
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coordinates and Sdefense
n is based on both his nearest defender’s distance (n.d.d.) and his court

region at that moment.1

To avoid these lengthy superscripts, going forward we will index players by x ∈ Splayer,
court regions by y ∈ Sregion and defensive pressure by z ∈ Sdefense. Consequently, from this
point onward, x and y no longer refer to Cartesian coordinates but rather to players and court
regions, respectively. Putting this all together, s

(x,y,z)
n denotes an observed state from S team

at the nth step of an episode from the team’s MDP.
As we are primarily interested in shooting decisions, we have chosen a binary action

space. At each step in the process, the ball handler decides either to shoot or not to shoot
(A = {“Shoot,” “Not Shoot”}) according to his policy π(·). If an = “Shoot,” the play termi-
nates; otherwise, the subsequent transition is generated by P(·). Later, we explore changes to
passing probabilities via perturbations to P(·).

2.3. Defining the average chain. Because most teams use upward of 500 lineups over
the course of a season, we assume that P(·), R(·) and π(·) are invariant to the lineup, that
is, other players do not impact transitions and rewards. This allows us to approximate the
data generating process (i.e., state transitions and player actions) at any given point in time
using a single team-average transition probability matrix which is essential in developing
both a tractable model for player-specific transitions and a computationally feasible method
to simulate multiple seasons’ worth of plays. We construct this team-average chain such that
it yields the same number of state-pair transitions in expectation as the sum across all the
independent chains for every unique state pair spanned by the set of lineups. Technically, for
a fixed interval in time a basketball play cannot yield an arbitrarily high number of transient
transitions before absorption due to the process of the shot clock. In this sense the episodes
we observe come from censored Markov chains. However, as this result could be useful
in many Markov chain applications outside of basketball, we will detail this derivation in
general limiting terms.

Consider a process defined by iterative episodes from two absorbing Markov chains, M1

and M2 (with initial distributions d1 and d2), where each successive episode is randomly
determined to come from M1 or M2 with weights w1 and w2 = (1 − w1), respectively.2

Each chain, indexed by � ∈ {1,2}, has transient states T � = {t�1 , . . . , t�T } and absorbing states
A� = {a�

1, . . . , a
�
A}. For simplicity, we assume that each chain has the same total number

of transient states and absorbing states (i.e., |T �| = T and |A�| = A for each � ∈ {1,2});
however, we note that set T 1 is not equal to set T 2, though there may exist overlapping
states.3 Our task is to construct a chain, MAVG, such that the expected transition count for
an arbitrary state pair from one episode of this chain is equal to the weighted average of the
expected transition counts of the separate chains for this same state pair.

We first write M1 and M2 in canonical form,

T 1 A1

M1 = T 1

A1

[
Q1 U1

0 IA

]
,

T 2 A2

M2 = T 2

A2

[
Q2 U2

0 IA

]
,

1The specific rules we follow for determining contested vs. open shots are given by (A.1) in Appendix A.3.
2There are many terms throughout this paper that must be indexed across multiple dimensions. For example, in

this derivation we need to differentiate one transition probability matrix M from another while also being able to
index the (j, k) elements of these separate matrices. To communicate indexes over various dimensions, we have
chosen to use superscripts in addition to subscripts to differentiate these dimensions that must be indexed. For this
reason, superscripts do not refer to exponents throughout this paper with the exception of inverses (e.g., X−1) and
variance parameters which are exclusively denoted by σ 2.

3A�, a� and A, as defined here, are not the same quantities defined previously in Sections 2.1 and 2.2. We felt
that this abuse of notation was warranted in order to make the derivation clearer to the reader.
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where IA is an A-by-A identity matrix, 0 is an A-by-T zero matrix, each U� is a nonzero
T -by-A matrix containing the absorption probabilities for chain � and each Q� is a T -by-T
matrix of the transient state to transient state probabilities. Each individual (j, k) entry of M�

is the probability of immediately transitioning to state t�k (or a�
k ) given current state t�j .

Following conventional notation (e.g., Grimstead and Snell (1997)), we define the funda-
mental matrix for chain M� as N� = (IT −Q�)−1. The n�

ij entry of N� is the expected number

of times that the chain visits transient state t�j given that the episode is initialized in state t�i .

Next, we define the matrix of expected state-pair transition counts, S�, in a cellwise manner
such that the (j, k) cell of S� equals

s�
jk = ∑

i

d�
i n

�
ijm

�
jk,(2.5)

where d� = {d�
1, . . . , d�

T } is the initial distribution of M�. In (2.5) i ∈ {1, . . . , T } indexes
the initial starting state of the chain, j ∈ {1, . . . , T } indexes the origin state and k ∈ {1, . . . ,

T + A} indexes the destination state. Hence, S� is a T -by-(T + A) matrix.
Conceptually, to create the average chain MAVG, we will combine S1 and S2 proportional

to the number of episodes that come from each chain using their respective weights, then
normalize the rows of the resulting matrix. We then define matrix SAVG such that any entry
of this matrix equals the weighted average of the expected transition counts of the separate
chains. This requires a bit more notation. For each chain M�, we define set V� as the outer
product of its transient state space T � with its total state space T � ∪ A�. Specifically, V� =
T � × {T � ∪A�} = {(t�1 , t�1), (t�1 , t�2), (t�2 , t�1), . . .}. SAVG can then be defined cellwise as

sAVG
j ′k′ =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
w1s1

j ′k′ + (
1 − w1)

s2
j ′k′, (tj ′, tk′) ∈ V1 ∩ V2,

w1s1
j ′k′, (tj ′, tk′) ∈ V1 ∩ (

V2)c
,(

1 − w1)
s2
j ′k′, (tj ′, tk′) ∈ (

V1)c ∩ V2,

0 otherwise,

(2.6)

where j ′ ∈ {1, . . . , |T 1 ∪ T 2|} indexes the collective set of origin states (i.e., T 1 ∪ T 2) and
k′ ∈ {1, . . . , |(T 1 ∪ T 2) ∪ (A1 ∪A2)|} indexes the collective set of destination states. There-
fore, SAVG is a |(T 1 ∪ T 2)|-by-|(T 1 ∪ T 2) ∪ (A1 ∪A2)| matrix.

Finally, let

T 1 ∪ T 2 A1 ∪A2

MAVG = T 1 ∪ T 2

A1 ∪A2

⎡⎣QAVG UAVG

0 I|A1∪A2|

⎤⎦ ,

where the (j ′, k′) cells of QAVG and UAVG are defined

qAVG
j ′k′ = sAVG

j ′k′∑
l s

AVG
j ′l

, for k′ ≤ |T 1 ∪ T 2|,(2.7)

uAVG
j ′k′ = sAVG

j ′k′∑
l s

AVG
j ′l

, for k′ > |T 1 ∪ T 2|.(2.8)

In (2.7)–(2.8) l ∈ {1, . . . , |(T 1 ∪ T 2) ∪ (A1 ∪ A2)|} and j ′ and k′ are indexed as in (2.6).
Clearly, the rows of this matrix sum to 1, and all entries are nonnegative, thereby making it
a valid transition probability matrix. By (2.6) it is trivial that the expected transition count
for an arbitrary state pair from MAVG is equal to the weighted average of the M1 and M2
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expected state-pair transition counts. Finally, the i ′th element of the initial distribution, dAVG,
for MAVG is

dAVG
i′ =

⎧⎪⎪⎨⎪⎪⎩
w1d1

i′ +
(
1 − w1)

d2
i′, ti′ ∈ T 1 ∩ T 2,

w1d1
i′, ti′ ∈ T 1 ∩ (

T 2)c
,(

1 − w1)
d2
i′, ti′ ∈ (

T 1)c ∩ T 2,

(2.9)

where i′ ∈ {1, . . . , |T 1 ∪ T 2|}. While we have shown this only for two chains, we can make
this same argument, recursively, with the current iteration of MAVG and a subsequent chain
to incorporate into the average, M�+1, showing that this result holds for an arbitrary number
of Markov chains.

The average chain allows us to accurately estimate aggregate counts (e.g., over the course
of the regular season) across all lineups without having to estimate each lineup’s transition
probabilities individually, making the problem tractable while still retaining enough detail to
explore the nuanced questions we are interested in.

2.4. Transition and policy tensors. In most MDP applications the transition dynamics,
P(·), are treated as being static while R(·) is assumed to vary temporally. However, in this
paper we assume the opposite; only the reward function is time-independent. The reason
for this is that in our case, time—or the shot clock rather—resets with each new episode
of the process, as opposed to continuing globally across episodes. We are concerned about
within-episode temporal dynamics, whereas most MDP applications consider time globally.
As such, the way we consider nonstationarity is quite different than how it is primarily treated
in the literature. Our framework requires a functional form of P(·) and π(·), whereas these
are conventionally modeled statically.4

To incorporate within-episode nonstationarity in P(·) and π(·), we propose using ten-
sors to allow for dynamic transition probabilities and shot policies over the shot clock. In
the stochastic processes literature the term “transition probability tensor” arises (albeit infre-
quently) in reference to the series of m transition probability matrices induced by an mth-
order Markov chain (e.g., Li and Ng (2014)). This is not what we mean by this term. Rather,
we refer to a transition probability tensor (TPT) as an approximation to a dynamic transition
probability function of a continuous temporal covariate which in this case is the shot clock.

To this end, we approximate P(·) and π(·) as tensors with nTPT matrix slices, each repre-
senting a transition probability matrix for a (24/nTPT)-second interval of the shot clock. We
want to choose nTPT to be as small as possible while still allowing our model to adequately
describe the nonstationary dynamics over the 24-second shot clock. From a model parsi-
mony and computational feasibility point of view, minimizing the number of TPT slices is
desirable; each additional TPT slice adds roughly one million more model parameters which
leads to a significant increase to the computational burden when fitting the model. We set-
tled on nTPT = 8, meaning that each TPT slice summarizes the transition dynamics over a
three-second interval of the shot clock.

We effectuate this approximation via a simple indexing function T (cn),

T (cn) =

⎧⎪⎪⎨⎪⎪⎩
1, cn ∈ (0,3],

...

8, cn ∈ (21,24],
(2.10)

4In reinforcement learning applications π(·) typically gets updated as the agent learns more about his environ-
ment. In this sense π(·) is dynamic, but this is different than the within-episode functional form for π(·) that we
refer to here.
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FIG. 2. A concept illustration of P(·) for the Cleveland Cavaliers most common starting lineup in the 2015–16
NBA regular season. For illustration purposes the row and column space of the TPT has been condensed to
five single-player states, however, in our models a typical team has a state space of over 200 states. Each slice
represents an approximation of the state-to-state transition probabilities during a 3-second interval of the shot
clock. Hence in this example, pAE

8 represents the average probability of Kyrie Irving passing the ball to Tristan
Thompson when the shot clock is in the interval (21,24].

where cn represents the shot-clock time at the nth moment of a play. Going forward, we will
represent realized values of T (cn) as tn, hence t will no longer refer to a transient state as in
Section 2.3. An illustrative eight-slice TPT is shown in Figure 2 for the Cleveland Cavaliers
2015–16 most common starting lineup.

The policy tensor is virtually identical to the TPT in form, the only difference being the
column space. Since the ball handler makes only a binary decision at every step of the process,
the shot policy given any time interval tn, is a matrix with row space equal to that of the
corresponding TPT slice and a column space of length two (“Shoot” and “Not shoot”). This
tensor framework is the key to accurately exploring the effects of altering shot policies. The
relative efficiency of a shot is dependent on the shot clock, and this framework allows us to
account for this temporal dependency and tailor our policy alterations accordingly.

3. Hierarchical modeling and inference. In this section we propose models for the la-
tent components of the MDP—P(·),R(·) and π(·)—with temporally varying dynamics as
outlined in Section 2.4. For each component we employ a Bayesian hierarchical modeling
approach, which provides a natural way to share strength across parameters that are alike.
While we fit each model independently of the others, they each employ a common hierarchi-
cal structure—player-specific parameters borrow strength from position-specific parameters
(e.g., point guards, power forwards, etc.) which in turn borrow strength from global location
and defensive pressure parameters.

3.1. Shot policy model—π(·). For an arbitrary play from a given team and letting nTPT =
8, we model the probability that the nth action of the play is a shot as a function of the ball
handler’s propensity to take a shot given the current state of the MDP (defined by the ball
handler, his court region and defensive pressure) and the shot clock time interval:

π(s, a) = P
(
An = “Shoot”|s(x,y,z)

n , tn, θ
) = expit

(
θ

(x,y,z)
tn

)
.(3.1)

In this equation An is a Bernoulli random variable for whether the nth action of a play is a
shot, s

(x,y,z)
n is as defined in Section 2.2, tn represents the interval of the shot clock at the
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nth moment of the play, θ
(x,y,z)
tn denotes player x’s propensity to shoot the ball when in court

region y under defensive pressure z and expit(·) is the inverse logit function: exp(·)
1+exp(·) . Note

that θ is a large parameter matrix of dimension |S team|-by-nTPT. For a 15-player roster using
three-second shot-clock intervals for the TPT, this results in a 180-by-8 matrix.5

We employ multilevel hierarchical priors for θ to pool information across similar states of
the MDP:

θ (x,y,z) ∼ N8
(
β(G(x),y,z),�θ

)
,(3.2)

β(g,y,z) ∼ N8
(
γ (y,z),�β

)
,(3.3)

γ (y,z) ∼ N8(0,�γ ),(3.4)

where G(x) returns the position type g of player x (e.g., point-guard, center, etc.). In (3.2) the
eight-dimensional state-specific shot propensity parameter θ (x,y,z) is given a multivariate nor-
mal prior with mean vector β(G(x),y,z), denoting the average shot propensity parameter vector
for all players who have the same position as player x (i.e., all players xi ∈ {x1, . . . , xNg } for
whom G(xi) = G(x)). This effectively shrinks player x’s estimated shooting propensity to-
ward players who share his same position and the shrinkage is more pronounced if he has
less observed data.

The second layer of the hierarchical prior has virtually an identical structure to (3.2); only
here, the position-specific parameter vector β(g,y,z) is given a multivariate normal prior with
mean vector γ (y,z), which denotes the average propensity to shoot in court region y under
defensive pressure z, regardless of player or position. For the final stage of the hierarchy,
(3.4), we use the eight-dimensional zero-vector as the prior mean, yielding a 0.5 prior prob-
ability of shooting in any given region/defense combination. While this is an unrealistic shot
probability for many states, our model is not sensitive to the values for this prior mean given
the immense amount of data we have for each region/defense combination across the season
in conjunction with weakly informative priors on each � in the hierarchy.

Each � in (3.2)–(3.4) is an AR(1) covariance matrix with correlation parameters and vari-
ance parameters corresponding to their respective levels of the hierarchy (i.e., ρθ , ρβ, ργ , and
σ 2

θ , σ 2
β , σ 2

γ ). We chose this covariance structure under the assumption that player shooting
behavior is more similar over intervals of the shot clock that are close in time and that this
correlation diminishes as intervals between times increases. The AR(1) structure provides a
natural construct to model this type of correlation. Specifically, ρ represents the correlation
between shot propensity parameters in the same state of the MDP for adjacent intervals of
the shot clock.

We use half-Cauchy priors (Polson and Scott (2012)) on all the scale parameters and Uni-
form[0, 1) priors on the temporal correlation parameters:

σθ , σβ, σγ ∼ half-Cauchy(0,2.5), ρθ , ρβ, ργ ∼ Uniform[0,1).

The half-Cauchy(0,2.5) prior contains 90% of its mass in the interval (0,15.78) which is
sufficiently noninformative for our application, and we only consider positive correlation for
ρ given that temporal trends in shooting behavior are generally smooth. Figure 3 shows a
graphical representation of the model for π(·).

If a shot is taken (i.e., if an = “Shoot”), then the MDP episode terminates and the reward,
Rn+1, is determined by R(·). Otherwise, rn+1 = 0 and the next state is determined by P(·).

5Due to the extreme infrequency of backcourt shots we don’t estimate player-specific coefficients for backcourt
shot policies and field goal percentages. For notational simplicity we have omitted this technicality in the model
definition.
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FIG. 3. A graphical representation of our model for π(·). The observable random variable is denoted by a gray

box while parameters are denoted by unfilled circles. A
(x,y,z)
n denotes the action of player x in region y with

defensive pressure z during time interval tn. It is governed by the corresponding state’s propensity parameter,

θ
(x,y,z)
tn

. These player/region/defense parameters θ are modeled by a multistage hierarchical prior, including a
layer for position/region/defense parameters β and region/defense parameters γ . The parameters θ , β and γ

all have a temporal dimension of nTPT = 8, which we convey horizontally in each layer of the graph. These
multivariate parameter vectors have latent AR(1) covariance matrices, �θ , �β , �γ . As shown by the plates in
the figure, player-specific parameters are nested within position-specific parameters, while location and defensive
pressure comprise the base model state space.

3.2. Transition probability model—P(·). Conditional on an = “Not shoot,” we model
the probability that the play transitions to state s(x′,y′,z′) as a function of the ball handler’s
latent propensity to transition to state s(x′,y′,z′) given his current state s

(x,y,z)
n and the current

interval of the shot clock tn:

(3.5) P
(
s, a, s′) = P

(
Sn+1 = s(x′,y′,z′)|an, s

(x,y,z)
n , tn,λ

) = exp(λ
((x,y,z),(x′,y′,z′))
tn )∑

i,j,k exp(λ
((x,y,z),(i,j,k))
tn )

,

where Sn+1 is a categorical random variable and λ
((x,y,z),(x′,y′,z′))
tn denotes player x’s propen-

sity to transition to s(x′,y′,z′) when in court region y under defensive pressure z. The symbols
an, s

(x,y,z)
n and tn are all as defined in Section 3.1. The support of Sn+1 is equivalent to

the state space S team, defined in Section 2.2, with one additional state—the terminal state
representing a turnover. Note that λ is a massive three-dimensional parameter array with di-
mensions |S team|× (|S team|+1)×nTPT. For a 15-player roster using three-second shot clock
intervals for the TPT, this results in a (180 × 181 × 8) array, yielding a minimum of 260,640
player-specific parameters to estimate for a single team.

As with the model for π(·), we employ multilevel hierarchical priors for λ:

λ((x,y,z),(x′,y′,z′)) ∼ N8
(
ζ ((G(x),y,z),(G(x′),y′,z′)),�λ

)
,(3.6)

ζ ((g,y,z),(g′,y′,z′)) ∼ N8
(
ω((y,z),(y′,z′)),�ζ

)
,(3.7)
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ω((y,z),(y′,z′)) ∼ N8(0,�ω).(3.8)

In (3.6) ζ ((G(x),y,z),(G(x′),y′,z′)) denotes the the eight-dimensional average propensity for all
players who have the same position as player x in court region y under defensive pressure
z to transition to players with the same position as player x′ in court region y′ under de-
fensive pressure z′. In (3.7) the position-specific parameter vector ζ ((g,y,z),(g′,y′,z′)) is given
a multivariate normal prior with mean vector ω((y,z),(y′,z′)) which can be similarly defined
at the global region/defense level. As in the model for π(·), we use the eight-dimensional
zero-vector as the prior mean for ω((y,z),(y′,z′)), and each � is an AR(1) covariance matrix
with correlation parameters and variance parameters corresponding to their respective levels
of the hierarchy (i.e., ρλ,ρζ , ρω, and σ 2

λ , σ 2
ζ , σ 2

ω).
Due to the computational burden of jointly fitting this three-stage model (i.e., jointly fitting

all 30 team’s transition dynamics—a total of nearly 10 million parameters), we use a two-
stage modeling approach for P(·) which was imperative given our computational constraints.
This enables us to fit each team’s transition dynamics separately while still allowing us to
borrow strength from the position-specific and location/defense levels of the hierarchy. The
details of the two-stage fitting process for P(·) are included in Appendix B.

3.3. Reward function—R(·). In context of a basketball play, (2.2) can be restated as,
“How many immediate points do we expect when a player in state s takes action a?” If the
action is a shot, then this expected value is his expected points per shot from the given state,
otherwise, it is zero.6 This allows us to define the reward function of the MDP completely in
terms of a shot-efficiency model.

Prior to formally defining R(·), we propose a model for the probability that a shot is made.
Given a shot, we model the make-probability as a function of the shooter’s skill and a region-
specific additive effect if the shot was uncontested or open,

(3.9) Make(s) = P
(
Mn = 1|s(x,y,z)

n ,μ, ξ
) = expit

(
μ(x,y) + I (zn = “Open”) × ξ (y)),

where Mn is a Bernoulli random variable for whether the attempted shot in moment n was
made, μ(x,y) denotes player x’s contested shooting skill in court region y, I (·) is an indicator
function of the defensive pressure zn in moment n and ξ (y) is the effect in court region y

if the shot is uncontested. Note that, in this model, defensive pressure is a region-specific
additive effect rather than being built into the player-specific parameters. This is because
detecting player-specific differences in how defensive pressure affects shot-make probability
is impracticable. While minor differences certainly exist, it would take massive amounts of
shot data—more than we have—to detect these differences with statistical confidence.

The reward function R(·) is the scaled make-probabilities for each state if a shot is taken
(scaled by 2 or 3, depending on the court-region) and 0 in the case that a shot is not taken or
if a turnover occurs,

R(s, a) =

⎧⎪⎪⎨⎪⎪⎩
3 × Make(s), y ∈ {3-pointer}, an = “Shot”,

2 × Make(s), y ∈ {2-pointer}, an = “Shot”,

0 otherwise.

(3.10)

As with P(·) and π(·), we use a multi-stage hierarchical prior for the player-specific pa-
rameters μ:

μ(x,y) ∼ N
(
ψ(H(x),y), σ 2

μ

)
,(3.11)

ψ(h,y) ∼ N
(
ϕy, σ 2

ψ

)
,(3.12)

ϕy ∼ N
(
0, σ 2

ϕ

)
.(3.13)

6In our analysis we have omitted plays that ended in fouls and any free throw situations.
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TABLE 1
Players were independently clustered by shot volume and shot region propensity. The table shows three players

in each group after crossing the resulting clusters

Shot volume

Shot region propensity

Equal balance 3-point heavy Mid heavy Rim heavy 3-point specialist Rim specialist

High L. James D. Lillard J. Wall A. Davis S. Curry A. Drummond
R. Westbrook K. Love D. Nowitzki I. Thomas T. Ariza G. Monroe
D. Cousins J. Harden K. Leonard D. Wade W. Matthews J. Okafor

Med L. Barbosa P. Beverly R. Rubio D. Favors K. Korver D. Jordan
L. Stephenson E. Ilyasova M. Speights E. Turner J. Terry T. Booker
N. Jokic O. Porter M. Belinelli B. Portis N. Mirotic C. Capela

Low A. Roberson J. Jerebko M. Muscala A. Miller J. Ingles A. Bogut
D. Motiejunas B. Jennings C. Watson A. Varejao J. Ennis B. Bass
K. McDaniels D. Augustin T. Prince D. Powell B. Rush J. McGee

In (3.11) μ(x,y) is given a normal prior with mean vector ψ(H(x),y), which denotes the average
shooting skill of all players who share the same group as player x (i.e., all players x′

i ∈
{x′

1, . . . , x
′
Nh

} for whom H(x′
i ) = H(x)) in location y. We emphasize that while P(·) and

π(·) define player groups g using naive player positions (center, power forward, point guard,
etc.) this model uses new groups, h, on which to base the regularization. The reason for this
change is that a player’s shooting skill does not have as clear a correspondence to his naive
position. As such, we create customized groupings to ensure sensitivity to this variation. We
will detail how we constructed these new groups shortly.

In the second layer of the hierarchical prior, ψ(h,y) is given a normal prior with mean
vector ϕy which denotes the global average shooting skill from court region y. As in the
model for π(·) and P(·), the final stage of the hierarchy is given a mean-0 normal prior with
variance σ 2

ϕ . Note that all the parameters in this model are given univariate priors rather than
multivariate priors since we model a player’s shooting skill as being constant over the shot
clock.

Next, we define the priors for ξ , the region-specific additive effects for uncontested shots,

ξy ∼ half-normal
(
0, σ 2

ξ

)
.(3.14)

We use a half-normal prior distribution since, all else being equal, open shots have higher
make probabilities than contested shots. Finally, as with the scale hyperpriors for π(·), we
use half-Cauchy priors for the scale parameters in R(·),

σμ,σψ,σϕ, σξ ∼ half-Cauchy(0,2.5).

To create the new player groupings h, we first clustered players into three categories based
exclusively on the volume of shots they took over the course of the season, irrespective of the
shot locations. Next, we reclustered players into six shot propensity categories based on the
proportional breakdown of their shots by court region, irrespective of volume. In both clus-
tering procedures we used the k-means algorithm initialized at cluster centroids calculated
via Ward linkage (Ward (1963)). We then crossed these clusters, giving a total of 18 groups
which differentiate players by how much they shoot and from where they tend to shoot. Ta-
ble 1 shows three example players in each cluster. We also assume independence across plays
for shot make probabilites which is a debated area of research (e.g., Neiman and Loewenstein
(2011)).
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3.4. Inference and validation. After removing plays we are not interested in modeling
(plays that terminated in either fouls, timeouts, jumpballs or in the backcourt), we have
155,656 plays (≈ 1.93 million observations) on which we fit our models. We held out a
sample of approximately 28,000 plays to use for model validation. We fit our models using
Stan, an open-source software package which offers a suite of MCMC methods for statistical
inference (Carpenter et al. (2017)). For each model we initialized two chains and let them mix
long enough to ensure we had a potential scale reduction factor < 1.05 for every parameter.
Effective sample sizes ranged from 48 to 15,000 across the set of parameters (see Appendix
A.2 for additional diagnostics). Details on the Stan model scripts for π(·), P(·) and R(·) can
be found in the Supplementary Material for this paper.

Following Franks et al. (2015) and Cervone et al. (2016), both of which utilize Bayesian
hierarchical models in conjunction with NBA optical tracking data, we use out-of-sample log-
likelihood as a mechanism for model validation. Table 2 shows out-of-sample log-likelihoods
for four models of increasing complexity for each component of the MDP. The transition
model column, P(·), represents log-likelihoods computed using only the Cleveland Cavaliers
TPT model, whereas the other columns comprise the entire league. For all three components,
the models with player-specific shrinkage perform best. All subsequent references to MDP
model components refer to the models in row D of Table 2.

3.5. Model fit. Figure 4 shows 95% credible intervals for the transition probabilities in
the base level of P(·). As shown in the block diagonal frames of Figure 4, the highest tran-
sition probabilities are to the same state, due to the predominant influence of dribbles in the
data. Conversely, it is improbable for the ball to transition immediately to a state which is not
directly geographically adjacent. Interestingly, the defensive pressure of the destination state
appears to have a much larger impact on transition probabilities than the defensive pressure
of the origin state.

The estimated shot policies and reward functions for LeBron James and Kyrie Irving of
the Cleveland Cavaliers are shown in Figure 5. The strong temporal autocorrelation captured
by the model (ρ̂θ = 0.94) significantly smooths jagged empirical policies yielding more plau-
sible results. The two players’ policies look quite similar, with the exception that Irving tends
to take contested midrange shots more frequently than James. Interestingly, Irving also takes
contested midrange shots more frequently than he takes arc 3-point shots. In general, this
is considered poor shot selection because most players have a higher expected points per
shot (EPPS) from beyond the arc than from the midrange. However, Irving appears to be an
anomaly in this respect; his midrange reward distribution is greater than his arc 3 distribu-
tion in expectation. His estimated shot policy evidences that he knows his strengths and acts
accordingly.

TABLE 2
Out-of-sample log-likelihoods for four models of increasing complexity

over each component of the MDP

Model π(·) P (·) R(·)
A. Empirical model −36,808 −17,299 −5956
B. Model A + location shrinkage −25,187 −38,702 −4571
C. Model B + position shrinkage −24,467 −25,099 −4561
D. Model C + player shrinkage −21,553 −13,478 −4540
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FIG. 4. Estimated league-wide transition probability tensor for the top level of the hierarchy on which each
team’s TPT is built. Within each plot frame the 95% credible interval of the origin to destination transition
probability is shown in dark gray and the posterior mean is shown by a black line. Within each plot frame the
x-axis represents time on the shot clock, while the y-axis represents the transition probability. Across plot frames
the y-axis represents the origin state and the x-axis represents the destination state. Corner 3, paint and rim states
are omitted to maintain a practical size for the figure.

4. Simulating plays. Having fit the models for the latent components of the MDP, our
next task is to simulate plays using these models. In this section we first describe our al-
gorithm for simulating a basketball play, and we conclude the section by comparing our
simulations to the observed trajectories.

4.1. Play simulation algorithm. The algorithm requires seven inputs: s0, θ , λ, μ, ξ , c0
and L(·). The first piece, s0, denotes the starting state of a play. For these we use the observed
starting states for each team’s collection of plays in the 2015–2016 NBA regular season.
Note that we do not treat the number of plays in a season nor the states in which plays
begin as random. Consequently, we do not analyze rebounding; the number of plays is fixed
beforehand, and once a turnover happens or a shot is taken, the play ends.

Next, we require parameters to govern the components of the MDP which stochastically
generate the states visited in plays, when shots occur and the point values of taken shots. For
these inputs we use the model fits for these components described in Section 3 (i.e., θ for π(·),
λ for P(·) and (μ, ξ ) for R(·)). Specifically, we take random draws from each parameter’s
respective set of Markov chains used to approximate its posterior distribution, f̂ (·|D), where
D denotes the training data. By using random draws from f̂ (·|D) for each parameter rather
than a single functional of the estimated posterior distribution (e.g., the posterior means), the
uncertainty in our estimation gets propagated through to our simulations. In other words, a
range of plausible parameter values are used in the simulations rather than point estimates.
This is critical in accurately quantifying the uncertainty in our simulations. We denote a pos-
terior draw from an arbitrary parameter’s posterior distribution by a tilde over the parameter
(e.g., λ̃ denotes a posterior draw from f̂ (λ|D)).

Lastly, we must account for the shot clock, including starting shot-clock times for all plays
and a mechanism to take time off of the shot clock at each step of the MDP. As in the case for
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FIG. 5. Estimated shot policies (95% credible intervals) and reward functions (posterior densities) for LeBron
James and Kyrie Irving in three sample states. The shot policies are overlaid with dots corresponding to their
empirical shot policies; the sizes of the dots are relative to how many shots they took within that time interval from
the indicated state. The reward functions are also overlaid with the empirical points per shot and the number of
shots they took from each state is given in the legend.

s0, we use the observed shot-clock times at the start of each play, denoted c0, for each team’s
collection of plays in the 2015–2016 NBA regular season. To take time off of the shot clock
at each step of the MDP, we sample the team’s empirical distribution of time-lapses between
events conditional on the current interval of the shot clock. This component of the simulator
makes performing analytical operations on the process intractable because the distribution of
time lapses between events does not lend itself to a parametric distribution. We denote this
empirical distribution by L(·) which is a function of tn. Algorithm 1 details the conceptual
structure of the simulation process.

In Algorithm 1 n indexes the sequential events in the play. The while-loop iteratively gen-
erates actions, states and zero-valued rewards until either: (1) a shot is taken, at which point
the reward is determined by R(·) and the loop breaks (i.e., the play terminates), or (2) the
play transitions to the “Turnover” state which can also occur by the shot clock expiring. For
each play we keep track of all generated states, actions and rewards.

4.2. Calibration. We can be extremely detailed in checking the calibration of our simu-
lations since we keep track of all simulated intermediary and terminal transitions. To assess
the calibration, we simulate 300 seasons for the Cleveland Cavaliers using the observed start-
ing states of all their 2015–16 plays and compare our simulations to the actual transition
counts. Note that these simulations are on-policy, meaning they are computed using variates
of the shot policy estimated on the observed data. In making this comparison we must be
cognizant of overfitting; the empirical model will always yield optimal calibration because
the empirical model fits both trends and errors. Models with regularization may appear less
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Algorithm 1: Basketball play simulator.

Input: s0, θ̃ , λ̃, μ̃, ξ̃ , c0, L(·)
Output: List of the simulated states (terminal and intermediary), actions and rewards

1 n ← 0;
2 while sn �= Turnover do
3 tn ← T (cn) ;
4 an ← Bernoulli variate from π(·|̃θ , sn, tn) ;
5 if an = Shot then
6 rn+1 ← R(sn, an|μ̃, ξ̃) ;
7 break loop;
8 else
9 rn+1 ← 0;

10 end
11 lapse ← draw from L(tn) ;
12 cn+1 ← cn − lapse ;
13 if cn+1 < 0 then
14 sn+1 ← Turnover (shot clock violation) ;
15 an+1 ← NULL ;
16 rn+1 ← 0 ;
17 else
18 sn+1 ← categorical variate from P(·|̃λ, sn, tn) ;
19 end
20 n ← n + 1 ;
21 end
22 return {s,a, r}

calibrated but ultimately give better fits because the modeling of errors is attenuated by the
induced shrinkage.

Figure 6 shows simulated player-aggregate transition counts for these 300 simulations
(gray) for the Cavaliers’ starting lineup overlaid with the observed counts (black, dashed).
Our simulations capture the aggregate transition count trends over the shot clock with high
integrity; however, they appear to be slightly biased low for some state pairs. On the other
hand, simulated transition counts for low-usage players (not shown) are generally biased high.
As noted previously, these phenomena are due to shrinkage in the hierarchical model, which
we are quick to note is not a model deficiency. As evidenced in Table 2, this borrowing of
information improves out-of-sample model fit, giving us more reliable calibration on macro-
level features.

5. Altering policies. With confidence that the method accurately reproduces play se-
quences under the observed policy model, we now simulate team-specific plays under altered
shot policies. However, before providing examples of altered policies we pause to discuss
some relevant topics from game theory.

5.1. Game theory.

5.1.1. Optimal policies. A general assumption of this paper is that teams are not operat-
ing on optimal shot policies. This is difficult to test, but there is research that supports this
conclusion (Goldman and Rao (2014a), Skinner (2012)). Regarding optimal stopping times
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FIG. 6. 300 simulated (gray) season-total transition counts over the shot clock overlaid with the corresponding
observed counts (black) for the 2015–2016 season. Within each plot frame, the x-axis represents time on the shot
clock, while the y-axis represents total transition counts. Across plot frames, the y-axis represents the origin state
and the x-axis represents the destination state.

(i.e., when a player shoots during a play relative to the shot clock), Goldman and Rao (2014a)
show that, while on average, the league as a whole closely follows the optimal curve, individ-
ual players are not perfect optimizers, often exhibiting tendency to undershoot. Even under
the assumption that a team is operating optimally, players and coaches could still gain utility
by exploring adverse effects of changes to this policy.

5.1.2. Allocative efficiency. A player’s shot efficiency depends on the volume of oppor-
tunities he is allocated. The mathematical formulation of this concept originates in the work
of Oliver (2004). Oliver defines the relationship between a player’s usage and his efficiency
as a “skill curve” and suggests that it should generally exhibit a downward trend, meaning
that players become less efficient as they carry more of the scoring load. This relationship is
important in context of altering shot policies. As explained in Goldman and Rao (2014b), if a
team changes its shot policy to take more 3-point shots, the team has to accept lower quality
3-point opportunities on the margin. This will lead to lower expected values for these addi-
tional shots but higher expected values for the 2-point shots that by consequence have a lower
usage rate due to the increase in 3-point shots. There is a counter-balancing relationship for
policy changes due to moving up (or down) the skill curve. For our purposes the simulation
method should not bias the results of testing policy changes, as long as the changes are not
drastic.

5.1.3. Defensive response. If a team makes a tactical change that gives them an advan-
tage, it is reasonable to assume that the defense will attempt to eliminate the advantage. This
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defensive response brings up some important questions in context of our project—“How sen-
sitive are defenses to policy alterations?” and “How long does it take for a defense to respond
sufficiently to make a policy change ineffectual?” These questions depend on too many vari-
ables to suggest a single answer; however, we offer some observational evidence from the
past two NBA regular seasons that suggests that, in some cases, the defensive response re-
sulting from a team’s altered shot policy does not render its strategy change ineffectual over
the course of a season.

In the 2016–17 NBA regular season, the Toronto Raptors shot on average 30.5% of their
shots from 3-point range, and they averaged 1.1 points per shot on these attempts.7 In the
2017–18 season, they shot 39.6% of their shots from 3-point range. This represents a 30%
increase in their team 3-point shot policy. Despite this increase in their 3-point shot policy, the
Raptors’ expected points per shot (EPPS) from beyond the arc only decreased less than 2%
(from 1.1 in 2016–17 to 1.08 in 2017–18). Additionally, the Raptors’ overall EPPS increased
from 1.1 in 2016–17 to 1.14 in 2017–2018. So while the policy change resulted in a small
loss of efficiency (perhaps due to defensive adaptation), the response was not such that it
rendered the Raptors’ policy change a zero-sum net benefit.

We acknowledge that this example is observational; these results could be due to season-
to-season variability or the outcome of other variables, such as the addition of new players
or the development/decline of returning players. Ultimately, predicting season outcomes for
alternate policies is an extrapolation. As such, we believe that testing minor perturbations to a
team’s policy will yield more credible results and that proposed changes should be carefully
crafted prior to testing.

5.2. Shot policy changes. We implement on-policy simulations by turning the crank of
Algorithm 1 using a team’s 2015–16 collection of starting state and shot clock time pairs
(s0, c0) for all of their regular season plays in tandem with posterior draws from the MDP
model fits. This results in one simulation of a season. Simulating a season with a policy alter-
ation follows the same process with one additional step—for each simulation we transform
the posterior draw of the shot policy model according to our alteration specifications, then
simulate seasons with these modified posterior draws. An example may help clarify exactly
how we perform this computationally.

Suppose we want to test a policy change in which player xi shoots in all court regions
and at all intervals of the shot clock with a 10% increase in frequency. We first modify the
posterior draws of the policy parameters θ̃ according to the specified alteration for all affected
elements,

(5.1) θ̃
(x,y,z)alt

tn = (
0.1 × θ̃

(x,y,z)
tn

) + θ̃
(x,y,z)
tn ∀y, z, tn, and x such that x ≡ xi,

where θ̃
(x,y,z)alt

tn represents an altered element of θ̃ and all other symbols are as defined previ-
ously in the text.8

We now show two examples of policy changes that could be explored with our methods and
compare the altered policy simulations to on-policy simulations. For each policy we simulate
300 seasons for the Cleveland Cavaliers. The results are shown in Figure 7.

Alteration 1. Reduce the contested midrange shot policy by 20% for all players on the team while
more than 10 seconds remain on the shot clock.
Alteration 2. Regardless of time on the shot clock, reduce all contested midrange shot policies by
70% while doubling all three-point shot policies.

7These statistics were gathered from stats.nba.com.
8We set a maximum threshold for altered shot policy parameters. If any of the parameters that would be altered

end up with θ̃
(x,y,z)alt

tn
> 0.9, we cap the alteration at 0.9. For reasonable policy alterations this issue shouldn’t

arise.

http://stats.nba.com
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FIG. 7. Left to right: distribution of simulated contested mid-range shots, 3-point shots, expected points per
shot, and expected points per play.

The most obvious distinction between the policies is the divergence between the contested
midrange and 3-point shot distributions which is not surprising since we directly altered these
shot policies. However, in order to measure whether the policy yields a net positive result for
a given team, we must quantify how the altered policy affects efficiency and production.
To measure these effects, we restrict our attention to the differences in EPPS and expected
points per play (EPPP). Under policy 2, shot efficiency increases (1.04 to 1.09 in EPPS) as
does play production (0.92 to 0.97 in EPPP). Under policy 1, these distributions show no
practical differences, largely due to only 7.5% of plays ending in a midrange shot with over
10 seconds on the shot clock, limiting the potential impact.

5.3. Passing policy changes. With a few modifications we can consider broader policy
changes that encompass not only shooting but also passing and movement as well. This en-
tails altering the probabilities of nonterminating state transitions via the TPT.9 We now ex-
plore two altered policies of this nature; the results are shown in Figure 8.

Alteration 3. Reduce the transitions from Irving to James by 90%.
Alteration 4. Triple the transition probabilities from all veterans to players on rookie contracts, while
reducing the transition probabilities from rookie contract players to veterans by 75%.

Alteration 3 represents a pathological example in which Irving forces his way into being
the dominant player on the team by almost never distributing the ball to James. The down-

FIG. 8. Left to right: distributions of simulated transitions from Irving to James, Irving’s total shots, James’
total shots, and expected points per play.

9In addition to the game theoretic consequences mentioned previously, new complexities arise with altering
passing/movement policies in the context of our model framework. Many state-transition pairs in the TPT are not
physically possible (e.g., a player cannot transition directly from the backcourt to the restricted area). Also, any
change where we increase player-to-player transition probabilities is potentially problematic. Passing more often
to a player in a specific location hinges on the assumption that the other player is correspondingly available in that
location which is something we do not control in our model.
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stream effects of the dominant Irving policy lead to a 18% increase his expected total shot
count, while James’ is reduced by 13%. Interestingly, though Irving’s and James’ total shot
distributions change dramatically, our method predicts that the overall differences in produc-
tion would be negligible.

Alteration 4 could be described as a youth development policy, where veteran players are
asked to take a back seat and players on rookie contracts are given the green light on offense.
This policy change has a much larger predicted impact on production. We estimate this policy
change would cost the Cavaliers 0.02 EPPP which could have significant consequences on
win totals and playoff outcomes.

6. Conclusion. We have developed and implemented a method to test the impact of
shot-clock dependent policy adjustments over the course of a season at an unprecedented
level of detail while accounting for model uncertainty in every aspect of the system. These
methods could have immediate practical impact across multiple levels of a basketball organi-
zation. Coaches could assess proposed strategy changes outside of games rather than risking
poor results by testing them in games. Front offices could explore the performance of hypo-
thetical rosters by leveraging the position-level transition probabilities in tandem with their
player-specific shot policies and reward functions. These tools could prove useful in evaluat-
ing trades and in free-agency negotiations. Additionally, our methods could enable teams to
gauge the effects of having to play second-string players if any starters suffered a long-term
injury. The examples we have shown in this paper are only the tip of the iceberg in terms of
how these methods could be utilized.

We have primarily considered shooting decisions in this introductory work, but, as shown
in Section 5.3, our methodology naturally scales to include all different types of basketball
decisions, allowing coaches and analysts to explore incredibly nuanced tactical changes. Ad-
ditionally, with similar tracking data now available for most major sports including hockey,
football and soccer, our methods could extend to testing decision policies in other sports.

In a broader statistical context we have provided and implemented a novel framework
for modeling within-episode nonstationarity in MDPs through the use of policy and transi-
tion probability tensors. We have also shown how to combine multiple MDPs into a single
weighted average process which can enable solutions to problems that were previously im-
practicable to compute. Additionally, we’ve built a method to simulate from this type of
MDP when the arrival times cannot be modeled parametrically. These contributions could be
beneficial in many different areas such as traffic modeling, queuing applications and environ-
mental processes.

Our paper opens doors for promising further studies. In terms of reinforcement learning, a
clear next step would be to solve/estimate the action-value function for the functional MDP
we introduce in this paper. In the basketball context, addressing the game theoretic aspects
by incorporating usage curves and simulating defensive response could make these methods
more robust.
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APPENDIX A: ADDITIONAL DETAILS AND DIAGNOSTICS

A.1. MDP in context of a basketball play.

FIG. 9. Illustration of the components of the MDP for a single player in context of a basketball play. The
blue circles represent states, the solid green circles represent actions (shots) and the curved blue lines represent
transition probabilities between states. The green lines of varying width connecting the blue state circles to the
green action circles represent the policy. The purple lines connecting the green action circles to the squares
represent the reward function. Players may pass the ball to another player (not shown) which is also a transition
to a nonterminal state. Not all states are shown in this concept illustration, and the widths of the edges were
determined randomly.

A.2. MCMC diagnostics.

TABLE 3
MCMC details and diagnostics for each fitted model. P1(·) and P2(·) refer to the 1st and 2nd stages of P(·).

Specifically, P2(·) refers to the 2nd stage fit on the Cavaliers TPT

Parameter π(·) P1(·) P2(·) R(·)
MCMC samples (per chain) 2000 16,000 1500 11,000
Burn-in 500 1000 500 1000
Minimum eff. sample size 48 76 371 181
Maximum R̂ 1.039 1.022 1.000 1.026
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A.3. Defensive pressure rules.

Sdefense
n =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

contested, sregion
n = rim & n.d.d. < 3ft,

contested, sregion
n = paint & n.d.d. < 3.5ft,

contested, sregion
n = mid-range & n.d.d. < 4ft,

contested, sregion
n ∈ {corner 3, arc 3,back-court} & n.d.d. < 5ft,

open otherwise.

(A.1)

APPENDIX B: TWO-STAGE APPROXIMATION FOR P(·)
This section describes our two stage approximation for the transition probability function

P(·). We first lay out both stages in mathematical terms, then define all terms and the me-
chanics of the fitting process:

STAGE 1

ζ ((g,y,z),(g′,y′,z′)) ∼N8
(
ω((y,z),(y′,z′)),�ζ

)
,(B.1)

ω((y,z),(y′,z′)) ∼N8(0,�ω),(B.2)

STAGE 2

λ((x,y,z),(x′,y′,z′)) ∼N8
(
ζ̂

((G(x),y,z),(G(x′),y′,z′))
,Sapprox.

λ

)
.(B.3)

In stage 1 all symbols are as defined in the main text for equations (3.7) and (3.8). We fit these
two layers of P(·) exactly as described for π(·) in Section 3.1—the hyperpriors for σζ and
σω are half-Cauchy(0,2.5) and the corresponding correlation parameters are Uniform[0,1).

After fitting stage 1 we can fit stage 2 separately for each team by using a fixed covari-
ance matrix Sapprox.

λ in the multivariate normal prior on λ. For a given team we initialize the
prior means of the player-specific parameters, λ, at the corresponding posterior means of the
position-specific parameter estimates, ζ̂ , estimated in stage 1.

Choosing the prior variance for λ requires greater discretion, since the covariance matrix
governs how strongly λ will shrink toward each player’s position-specific parameter estimate
ζ̂ from stage 1. As in our model for π(·), Sapprox.

λ is given an AR(1) structure, therefore
fixing the covariance matrix amounts to selecting values for σλ and ρλ. We assume that the
temporal covariance structure governing the shot policy model π(·) resembles that of the
transition model P(·). This allows us to leverage our knowledge about of the ratio between
σθ and σβ in selecting a value for σλ. Using the posterior means as estimates, (σ̂θ /σ̂β) = 1.8,
hence, the player-specific parameters have a standard deviation roughly twice as big as that of
the group-specific parameters in the policy model. Since we have an estimate for the group-
level standard deviation of the transition model from stage 1, σ̂ζ , we multiply this value by
the ratio from the policy model, 1.8, to select an appropriate value for σ̂λ. Hence, we fix σλ =
σ̂ζ × 1.8 = 2.14. Likewise, we fix ρλ at the corresponding value in the policy model which is
0.94. We can then create the covariance matrix Sapprox.

λ and fit stage 2 of the approximation
to get estimates for λ.
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SUPPLEMENTARY MATERIAL

Supplement to “Markov decision processes with dynamic transition probabilities: An
analysis of shooting strategies in basketball” (DOI: 10.1214/20-AOAS1348SUPP; .zip).
The directory nba_replay.zip contains a one game sample of optical player tracking data
courtesy of STATS LLC from the 2012–2013 NBA regular season between the Miami Heat
and the Brooklyn Nets, formatted according to the methods described in our paper. The pur-
pose is to provide a reproducible, simplified analysis of the methods introduced in Markov
Decision Processes with Dynamic Transition Probabilities: An Analysis of Shooting Strate-
gies in Basketball. The R markdown document walkthrough.Rmd shows how to simulate
plays from this game using the models described in Section 3 of the paper for each team’s
MDP and the simulation algorithm defined in Section 4. The document concludes by testing
an altered policy for the Miami Heat and comparing the simulations under this altered policy
to the on-policy simulations. A knit pdf of the walkthrough document is contained as well.
This directory is a copy of the nba_replay GitHub repository, maintained at the first author’s
GitHub page.
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