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Abstract: Every shot in basketball has an opportunity cost;
one player’s shot eliminates all potential opportunities
from their teammates for that play. For this reason, player-
shot efficiency should ultimately be considered relative to
the lineup. This aspect of efficiency—the optimal way to
allocate shots within a lineup—is the focus of our paper.
Allocative efficiency should be considered in a spatial
context since the distribution of shot attempts within a
lineup is highly dependent on court location. We propose a
new metric for spatial allocative efficiency by comparing a
player’s field goal percentage (FG%) to their field goal
attempt (FGA) rate in context of both their four teammates
on the court and the spatial distribution of their shots.
Leveraging publicly available data provided by the Na-
tional Basketball Association (NBA), we estimate player FG
% at every location in the offensive half court using a
Bayesian hierarchical model. Then, by ordering a lineup’s
estimated FG%s and pairing these rankings with the
lineup’s empirical FGA rate rankings, we detect areas
where the lineup exhibits inefficient shot allocation.
Lastly, we analyze the impact that sub-optimal shot allo-
cation has on a team’s overall offensive potential,
demonstrating that inefficient shot allocation correlates
with reduced scoring.

Keywords: basketball; Bayesian hierarchical model;
ordering; ranking; spatial data.

The first and second authors contributed equally to this work.

*Corresponding author: Nathan Sandholtz, Simon Fraser University,
Burnaby, Canada, E-mail: nathan.sandholtz@gmail.com.
https://orcid.org/0000-0002-2208-1951

Jacob Mortensen and Luke Bornn, Simon Fraser University, Burnaby,
Canada, jacob.w.mortensen@gmail.com (J. Mortensen),
Ibornn@sfu.ca (L. Bornn)

1 Introduction

From 2017 to 2019, the Oklahoma City Thunder faced four
elimination games across three playoff series. In each of
these games, Russell Westbrook attempted over 30 shots
and had an average usage rate of 45.5%." The game in which
Westbrook took the most shots came in the first round of the
2017-18 National Basketball Association (NBA) playoffs,
where he scored 46 points on 43 shot attempts in a 96-91
loss to the Utah Jazz. At the time, many popular media fig-
ures conjectured that having one player dominate field goal
attempts in this way would limit the Thunder’s success.
While scoring 46 points in a playoff basketball game is an
impressive feat for any one player, its impact on the overall
game score is moderated by the fact that it required 43 at-
tempts. Perhaps not coincidentally, the Thunder lost three of
these four close-out games and never managed to make it
out of the first round of the playoffs.

At its core, this critique is about shot efficiency. The
term ‘shot efficiency’ is used in various contexts within the
basketball analytics community, but in most cases it has
some reference to the average number of points a team or
player scores per shot attempt. Modern discussion around
shot efficiency in the NBA typically focuses on either shot
selection or individual player efficiency. The concept of
shot selection efficiency is simple: 3-pointers and shots
near the rim have the highest expected points per shot, so
teams should prioritize these high-value shots. The idea
underlying individual player efficiency is also straightfor-
ward; scoring more points on the same number of shot
attempts increases a team’s overall offensive potential.

However, when discussing a player’s individual effi-
ciency it is critical to do so in context of the lineup.
Baskethall is not a 1-v-1 game, but a 5-v-5 game. Therefore,
when a player takes a shot, the opportunity cost not only
includes all other shots this player could have taken later in
the possession, but also the potential shots of their four

1 Usage percentage is an estimate of the percentage of team plays
used by a player while they were on the floor. For a detailed formula
see www.basketball-reference.com/about/glossary.html.
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teammates. So regardless of a player’s shooting statistics
relative to the league at large, a certain dimension of shot
efficiency can only be defined relative to the abilities of a
player’s teammates. Applying this to the Oklahoma City
Thunder example above, if Westbrook were surrounded by
dismal shooters, 43 shot attempts might not only be
defensible but also desirable. On the other hand, if his
inordinate number of attempts prevented highly efficient
shot opportunities from his teammates, then he caused
shots to be inefficiently distributed and decreased his
team’s scoring potential. This aspect of efficiency—the
optimal way to allocate shots within a lineup—is the pri-
mary focus of our paper.

Allocative efficiency is spatially dependent. As illus-
trated in Figure 1, the distribution of shots within a lineup is
highly dependent on court location. The left plot in Figure 1
shows the overall relationship between shooting frequency
(x-axis) and shooting skill (y-axis), while the four plots on
the right show the same relationship conditioned on
various court regions. Each dot represents a player, and the
size of the dot is proportional to the number of shots the
player took over the 2016-17 NBA regular season. To
emphasize how shot allocation within lineups is spatially
dependent, we have highlighted the Cleveland Cavaliers
starting lineup, consisting of LeBron James, Kevin Love,
Kyrie Irving, JR Smith, and Tristan Thompson.

When viewing field goal attempts without respect to
court location (left plot), Kyrie Irving appears to shoot more
frequently than both Tristan Thompson and LeBron James,

Overall Field Goal Attempt (FGA) Rate by Points Per Shot (PPS)
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despite scoring fewer points per shot than either of them.
However, after conditioning on court region (right plots),
we see that Irving only has the highest field goal attempt
(FGA) rate in the mid-range region, which is the region for
which he has the highest PPS for this lineup. James takes
the most shots in the restricted area and paint regions—
regions in which he is the most efficient scorer. Further-
more, we see that Thompson’s high overall PPS is driven
primarily by his scoring efficiency from the restricted area
and that he has few shot attempts outside this area. Clearly,
understanding how to efficiently distribute shots within a
lineup must be contextualized by spatial information.

Notice that in the left panel of Figure 1, the relationship
between FGA rate and points per shot (PPS) appears to be
slightly negative, if there exists a relationship at all. Once the
relationship between FGA rate and PPS is spatially dis-
aggregated (see right hand plots of Figure 1), the previously
negative relationship between these variables becomes
positive in every region. This instance of Simpson’s paradox
has non-trivial implications in the context of allocative ef-
ficiency which we will discuss in the following section.

The goal of our paper is to create a framework to assess
the strength of the relationship between shooting fre-
quency and shooting skill spatially within lineups and to
quantify the consequential impact on offensive produc-
tion. Using novel metrics we develop, we quantify how
many points are being lost through inefficient spatial
lineup shot allocation, visualize where they are being lost,
and identify which players are responsible.
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Figure 1: Left: overall relationship between field goal attempt rate (x-axis) and points per shot (y-axis). Right: same relationship conditioned
on various court regions. The Cleveland Cavaliers 2016-17 starting lineup is highlighted in each plot. The weighted least squares fit of each

scatter plot is overlaid in each plot by a dotted line.
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1.1 Related work

In recent years, a number of metrics have been developed
which aim to measure shot efficiency, such as true shoot-
ing percentage (Kubatko et al. 2007), gSQ, and gSI (Chang
et al. 2014). Additionally, metrics have been developed to
quantify individual player efficiency, such as Hollinger’s
player efficiency rating (Hollinger 2005). While these
metrics intrinsically account for team context, there have
been relatively few studies which have looked at shooting
decisions explicitly in context of lineup, and none
spatially.

Goldman and Rao (2011) coined the term ‘allocative
efficiency’, modeling the decision to shoot as a dynamic
mixed-strategy equilibrium weighing both the continua-
tion value of a possession and the value of a teammate’s
potential shot. They propose that a team achieves optimal
allocative efficiency when, at any given time, the lineup
cannot reallocate the ball to increase productivity on the
margin. Essentially, they argue that lineups optimize over
all dimensions of an offensive strategy to achieve equal
marginal efficiency for every shot. The left plot of Figure 1is
harmonious with this theory—there appears to be no rela-
tionship between player shooting frequency and player
shooting skill when viewed on the aggregate. However, one
of the most important dimensions the players optimize
over is court location. Once we disaggregate the data by
court location, (as shown in the right plots of Figure 1), we
see a clear relationship between shooting frequency and
shooting skill. A unique contribution of our work is a
framework to assess this spatial component of allocative
efficiency.

‘Shot satisfaction’ (Cervone et al. 2016) is another rare
example of a shot efficiency metric that considers lineups.
Shot satisfaction is defined as the expected value of a
possession conditional on a shot attempt (accounting for
various contextual features such as the shot location,
shooter, and defensive pressure at the time of the shot)
minus the unconditional expected value of the play.
However, since shot satisfaction is marginalized over the
allocative and spatial components, these factors cannot be
analyzed using this metric alone. Additionally, shot satis-
faction is dependent on proprietary data which limits its
availability to a broad audience.

1.2 Data and code

The data used for this project is publicly available from the
NBA stats API (stats.nba.com). Shooter information and
shot (x, y) locations are available through the
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‘shotchartdetail’ API endpoint, while lineup information
can be constructed from the ‘playbyplayv2’ endpoint. Code
for constructing lineup information from play-by-play
data is available at: https://github.com/jwmortensen/
pbp2lineup. Using this code, we gathered a set of 224,567
shots taken by 433 players during the 2016—17 NBA regular
season, which is the data used in this analysis. Code used
to perform an empirical version of the analysis presented in
this paper is also available online: https://github.com/
nsandholtz/1pl.

2 Models

The foundation of our proposed allocative efficiency metrics
rest on spatial estimates of both player FG% and FGA rates.
With some minor adjustments, we implement the FG%
model proposed in Cervone et al. (2016). As this model is the
backbone of the metrics we propose in Section 3, we thor-
oughly detail the components of their model in Section 2.1.
In Section 2.2, we present our model for estimating spatial
FGA rates.

2.1 Estimating FG% surfaces

Player FG% is a highly irregular latent quantity over the
court space. In general, players make more shots the closer
they are to the hoop, but some players are more skilled
from a certain side of the court and others specialize from
very specific areas, such as the corner 3-pointer. In order to
capture these kinds of non-linear relationships, Cervone
et al. (2016) summarizes the spatial variation in player
shooting skill by a Gaussian process represented by a low-
dimensional set of deterministic basis functions. Player-
specific weights are estimated for the basis functions using
a Bayesian hierarchical model (Gelman et al. 2013). This
allows the model to capture nuanced spatial features that
player FG% surfaces tend to exhibit, while maintaining a
feasible dimensionality for computation.

We model the logit of 71; (s), the probability that player j
makes a shot at location s, as a linear model:

7 (S)

log<1_ﬂj(s)) =Bx+Z;(s), 6)]

where 8 is a 4 x 1 vector of covariate effects and x is a
4 x 1 vector of observed covariates for the shot containing
an intercept, player position, shot distance, and the inter-
action of player position and shot distance. Z(s) is a
Gaussian process which accounts for the impact of location
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on the probability of player j making a shot. We model Zj(s)
using a functional basis representation,

Zi(s) =w; A¥(s), 2

where w; = (wjy, ..., wjp)’ denotes the latent basis function
weights for player j and AV (s)denotes the basis functions.
Specifically, A = (A;,...,Ap) is a D x K matrix, where each
row vector A; represents the projection of the dth basis
function onto a triangular mesh with K vertices over the
offensive half court (more details on the construction of
Afollow below). We use the mesh proposed in (Cervone
et al. 2016), which was selected specifically for modeling
offensive spatial behavior in basketball. Y(s)=
(¥, (), ..., Py (5)) is itself a vector of basis functions where
each i, (s)is 1 at mesh vertex k, O at all other vertices, and
values at the interior points of each triangle are determined
by linear interpolation between vertices (Lindgren, Rue,
and Lindstrém 2011). Finally, we assume w; ~ N (w;, ),
which makes (2) a Gaussian process with mean w; " A¥ (s)
and covariance function Cov (s;, s;) = W (s;) A LAY (s,).

Following Miller et al. (2014), the bases of shot taking
behavior, A, are computed through a combination of
smoothing and non-negative matrix factorization (NMF)
(Lee and Seung 1999). Using integrated nested Laplace
approximation (INLA) as the engine for our inference
(Lindgren and Rue 2015), we first fit a log Gaussian Cox
Process (LGCP) (Banerjee, Carlin, and Gelfand 2015) inde-
pendently to each player’s point process defined by the (x,
y) locations of their made shots using the aforementioned
mesh.? Each player’s estimated intensity function is eval-
uated at each vertex, producing a K-dimensional vector for
each of the L = 433 players in our data. These vectors are
exponentiated and gathered (by rows) into the L x K matrix
P, which we then factorize via NMF:

P~ (L§D><D/x\1<)' G)

This yields A, the deterministic bases we use in (2).

While the bases from (3) are constructed solely with
respect to the spatial variation in the FGA data (i.e., no
basketball-specific structures are induced a priori), the
constraint on the number of bases significantly impacts the
basis shapes. In general, the NMF tends to first generate
bases according to shot distance. After accounting for this
primary source of variation, other systematic features of
variation begin to appear in the bases, notably asymmetry.
We use D = 16 basis functions, aligning with Miller et al.
(2014) which suggests the optimal number of basis

2 Players who took less than five shots in the regular season are
treated as “replacement players.”
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functions falls between 15 and 20. Collectively, these bases
comprise a comprehensive set of shooting tendencies, as
shown in Figure 2. We have added labels post hoc to pro-
vide contextual intuition.

Conceptually, the Z; (s) term in (1) represents a player-
specific spatial correction to the global regression model
B'x. These player-specific surfaces are linear combina-
tions of the bases shown in Figure 2. The weights of these
combinations, w;, are latent parameters which are jointly
estimated with B. Since these player weights can be highly
sensitive for players with very little data, it is imperative
to introduce a regularization mechanism on them, which
is accomplished using a conditionally autoregressive
(CAR) prior. Conveniently, the NMF in (3) provides player-
specific loadings onto these bases, B, which we use in
constructing this CAR prior on the basis weights, w;
(Besag 1974). The purpose of using a CAR prior on the
basis weights is to shrink the FG% estimates of players
with similar shooting characteristics toward each other.
This is integral for obtaining realistic FG% estimates in
areas where a player took a low volume of shots. With
only a handful of shots from an area, a player’s empirical
FG% can often be extreme (e.g., near 0% or 100%). The
CAR prior helps to regularize these extremes by
borrowing strength from the player’s neighbors in the
estimation.

In order to get some notion of shooting similarity be-
tween players, we calculate the Euclidean distance be-
tween the player loadings contained in B and, for a given
player, define the five players with the closest player
loadings as their neighbors. This is intentionally chosen to
be fewer than the number of neighbors selected by Cervone
et al. (2016), recognizing that more neighbors leads to a
stronger prior and limits player-to-player variation in the
FG% surfaces. We enforce symmetry in the nearest-
neighbors relationship by assuming that if player j is a
neighbor of player ¢, then player ¢ is also a neighbor of
player j, which results in some players having more than
five neighbors. These relationships are encoded in a player
adjacency matrix H where entry (j, ) is 1 if player € is a
neighbor of player j, and 0 otherwise. The CAR prior on w;
can be specified as

1 72
Wilw_, )~ N = ¥ we.—Ip
Njem=1 N

(4)
72 ~ InvGam(1, 1).
where n; is the total number of neighbors for player j.
Lastly, we set a A (0,0.001 x I) prior on 8, and fit the

model using INLA. This yields a model that varies spatially
and allows us to predict player-specific FG% at any
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Figure 2: Deterministic bases resulting from the non-negative matrix factorization of P. The plots are arranged such that the bases closest to
the hoop are on the left (e.g., Under Hoop) and the bases furthest from the hoop are on the right (e.g., Center Arc 3). The residual basis,
comprising court locations where shots are infrequently attempted from, is shown in the bottom-right plot.

location in the offensive half court. In order to get high
resolution FG% estimates, we partition the court into 1 by
1 ft grid cells (yielding a total of M = 2350 cells) and denote
player j’s FG% at the centroid of grid cell i as &;;. The pro-

jection of the FG% posterior mean (& ;) for LeBron James is
depicted in Figure 3.

In order to have sufficient data to reliably estimate
these surfaces, we assume that player FG%s are lineup
independent. We recognize this assumption may be
violated in some cases, as players who draw significant
defensive attention can improve the FG%s of their team-
mates by providing them with more unguarded shot op-
portunities. Additionally, without defensive information
about the shot opportunities, the FG% estimates are sub-
ject to systematic bias. Selection bias is introduced by
unequal amounts of defensive pressure applied to shooters
of different skill levels.

The Bayesian modeling framework can amplify selec-
tion bias as well. Since the FG% estimates are regularized

LeBron James' Estimated FG%

in our model via a CAR prior, players FG% estimates shrink
toward their neighbors (which we’ve defined in terms of
FGA rate). While this feature stabilizes estimates for
players with low sample sizes, it can be problematic when
entire neighborhoods have low sample sizes from specific
regions. For example, there are many centers who rarely or
never shoot from long range. Consequently, the entire
neighborhood shrinks toward the global mean 3-point FG
%, inaccurately inflating these players’ FG%s beyond the
3-point line. These are intriguing challenges and represent
promising directions for future work.

2.2 Determining FGA rate surfaces

We determine a player’s FGA rate surface by smoothing
their shot attempts via a LGCP. This model has the form

logA(s) = B, + Z(s),

LeBron James' FG% Standard Deviation

Std. Dev.

-
> oo N

Figure 3: LeBron)ames 2016—-17 FG% posterior mean (left) and posterior standard deviation (right) projected onto the offensive half court. The
prediction surfaces shown here and throughout the figures in this paper utilize projections onto a spatial grid of 1 by 1 ft cells.
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where A(s) is the Poisson intensity indicating the number of
expected shots at location s, 8,is an intercept, and Z (s) is a
Gaussian process. We fit this model separately for each
player using INLA, following the approach in Simpson
et al. (2016). In brief, they demonstrate that the likelihood
for the LGCP can be approximated using a finite-
dimensional Gaussian random field, allowing Z(s) to be
represented by the Dbasis function expansion
Z(s) = Zf;lzbq,’)b (s). The basis function ¢, (s) projects shot
location onto a triangular mesh akin to the one detailed for
(2). The expected value of A(s) integrated over the court is
equal to the number of shots a player has taken, however
there can be small discrepancies between the fitted in-
tensity function and the observed number of shots. In order
to ensure consistency, we scale the resulting intensity
function to exactly yield the player’s observed number of
shot attempts in that lineup.

We normalize the surfaces to FGA per 36 min by
dividing by the total number of minutes played by the
associated lineup and multiplying by 36, allowing us to
make meaningful comparisons between lineups who differ
in the amount of time played. As with the FG% surfaces (&),
we partition the court into 1 by 1 ft grid cells and denote
player j’s FGA rate at the centroid of grid cell i as A;;.

Note that we approach the FGA rate estimation from a
fundamentally different perspective than the FG% esti-
mation. We view a player’s decision to shoot the ball as
being completely within their control and hence non-
random. As such, we incorporate no uncertainty in the
estimated surfaces. We use the LGCP as a smoother for
observed shots rather than as an estimate of a player’s
true latent FGA rate. Other smoothing methods could be
used instead (e.g., kernel based methods (Diggle 1985)).

Depending on the player and lineup, a player’s shot
attempt profile can vary drastically from lineup to lineup.
Figure 4 shows Kyrie Irving’s estimated FGA rate surfaces
in the starting lineup (left) and the lineup in which he
played the most minutes without LeBron James (middle).
The right plot shows the difference between these two
surfaces. Based on these two lineups, Irving took 9.2 more
shots per 36 min when he didn’t share the court with James.
He also favored the left side of the court far more, which
James tends to dominate when on the court.

As illustrated by this example, player shot attempt
rates are not invariant to their teammates on the court. We
therefore restrict player FGA rate estimation to lineup-
specific data. Fortunately, the additional sparsity intro-
duced by conditioning on lineup is a non-issue. If a player
has no observed shot attempts from a certain region (e.g.,
Tristan Thompson from 3-point range), this simply means
they chose not to shoot from that region—we don’t need to
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borrow strength from neighboring players to shed light on
this area of “incomplete data”.

3 Allocative efficiency metrics

The models for FG% and FGA rate described in Section 2
are the backbone of the allocative efficiency metrics we
introduce in this section: lineup points lost (LPL) and
player LPL contribution (PLC). LPL is the output of a
two-step process. First, we redistribute a lineup’s
observed distribution of shot attempts according to a
proposed optimum. This optimum is based on ranking
the five players in the lineup with respect to their FG%
and FGA rate and then redistributing the shot attempts
such that the FG% ranks and FGA rate ranks match.
Second, we estimate how many points could have been
gained had a lineup’s collection of shot attempts been
allocated according to this alternate distribution. In this
section, we go over each of these steps in detail and
conclude by describing PLC, which measures how in-
dividual players contribute to LPL.

Before getting into the details, we emphasize that these
metrics are agnostic to the underlying FG% and FGA
models; they can be implemented using even crude esti-
mates of FG% and FGA rate, for example, by dividing the
court into discrete regions and using the empirical FG%
and FGA rate within each region.? Also note that the biases
affecting FG% and FGA rate described in Section 2 may
affect the allocative efficiency metrics as well. Section 4
includes a discussion of the causal limitations of the
approach.

3.1 Spatial rankings within a lineup

With models for player FG% and player-lineup FGA
rate, we can rank the players in a given lineup (from 1 to
5) on these metrics at any spot on the court. For a given
lineup, let Rl?( be a discrete transformation of &;—the
lineup’s FG% vector in court cell i—yielding each
player’s FG% rank relative to their four teammates.
Formally,

R ={(ng +1) - k:§;=¢"}, 2

where n, is the length of §; (this length will always be 5 in
our case) and ¢ i(k) is the kth order statistic of §;. Since { ; is a

3 Section A.1in the Appendix shows how LPL can be calculated using
empirical estimates of FG% and FGA rate.
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Figure 4: Left: Kyrie Irving’s FGA rate per 36 min in the starting lineup (in which he shared the most minutes with LeBron James). Center: Kyrie
Irving’s FGA rate per 36 min in the lineup for which he played the most minutes without LeBron James. Right: The difference of the center

surface from the left surface.

stochastic quantity governed by a posterior distribution, Rf].
is also distributional, however its distribution is discrete,
the support being the integers {1, 2, 3, 4, 5}. The distribution
of Rl?; can be approximated by taking posterior samples of §;
and ranking them via (5). Figure 16 in the appendix shows
the 20% quantiles, medians, and 80% quantiles of the
resulting transformed variates for the Cavaliers starting
lineup.

We obtain ranks for FGA rates in the same manner as
for FG%, except these will instead be deterministic quan-
tities since the FGA rate surfaces, A, are fixed. We define
R} as

Rj = {(ns, +1) ~k: 43 = A"}, ©

where ny, is the length of A;and A¥ is the kth order statistic
of A;. Figure 5 shows the estimated maximum a posteriori®
(MAP) FG% rank surfaces, Rg, and the deterministic FGA
rate rank surfaces, R", for the Cleveland Cavaliers starting
lineup.

The strong correspondence between R and R* shown
in Figure 5 is not surprising; all other factors being equal,
teams would naturally want their most skilled shooters
taking the most shots and the worst shooters taking the
fewest shots in any given location.

By taking the difference of a lineup’s FG% rank surface

from its FGA rate rank surface, R* — Rs, we obtain a surface
which measures how closely the lineup’s FG% ranks match
their FGA rate ranks. Figure 6 shows these surfaces for the
Cavaliers’ starting lineup. Note that rank correspondence
ranges from —4 to 4. A value of -4 means that the worst
shooter in the lineup took the most shots from that loca-
tion, while a positive 4 means the best shooter took the
fewest shots from that location. In general, positive values

4 For the FG% rank surfaces we use the MAP estimate in order to
ensure the estimates are always in the support of the transformation.
For parameters with continuous support, such as Z’, the hat symbol
denotes the posterior mean.

of rank correspondence mark areas of potential under-us-
age and negative values show potential over-usage. For the
Cavaliers, the positive values around the 3-point line for
Kyrie Irving suggest that he may be under-utilized as a 3-
point shooter. On the other hand, the negative values for
LeBron James in the mid-range region suggest that he may
be over-used in this area. We emphasize, however, that
conclusions should be made carefully. Though inequality
between the FG% and FGA ranks may be indicative of sub-
optimal shot allocation, this interpretation may not hold in
every situation due to bias introduced by confounding
variables (e.g., defensive pressure, shot clock, etc.).

3.2 Lineup points lost

By reducing the FG% and FGA estimates to ranks, we
compromise the magnitude of player-to-player differences
within lineups. Here we introduce LPL, which measures
deviation from perfect rank correspondence while retain-
ing the magnitudes of player-to-player differences in FG%
and FGA.

LPL is defined as the difference in expected points
between a lineup’s actual distribution of FG attempts, A,
and a proposed redistribution, A*, constructed to yield

perfect rank correspondence (i.e., R;;‘ - R?; =0 V ij).
Formally, we calculate LPL in the ith cell as

LPL; = }g Vi £ij . <A1 [g(Rg)] - Aij) (7)
) ;; vie &y (45 - 4y), ®)

where v; is the point value (2 or 3) of a made shot, ¢ 5 1s the
FG% for player j in cell i, A; is player j’s FG attempts (per
36 min)incelli,and g (Rl?;) =1{k: Rfj = R} }. The function g())
reallocates the observed shot attempt vector A; such that
the best shooter always takes the most shots, the second

best shooter takes the second most shots, and so forth.
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Figure5: Top: Maximum a posteriori FG% ranks for the Cleveland Cavaliers’ starting lineup. Bottom: Deterministic field goal attempt (FGA) rate
ranks.

Kevin Love

Kyrie Irving Tristan Thompson

Rank
Correspondence

4
3

Figure 6: Rank correspondence surfaces for the Cleveland Cavaliers’ starting lineup.

Figure 7 shows a toy example of how LPL is computed
for an arbitrary 3-point region, contextualized via the
Cleveland Cavaliers starting lineup. In this hypothetical
scenario, James takes the most shots despite both Love
and Irving being better shooters from this court region.
When calculating LPL for this region, Irving is allocated
James’ nine shots since he is the best shooter in this area.
Love, as the second best shooter, is allocated Irving’s four
shots, which was the second most shots taken across the
lineup. James, as the third best shooter, is allocated the
third most shot attempts (Love’s three shots). Smith and
Thompson’s shot allocations are unchanged since their
actual number of shots harmonizes with the distribution
imposed by g(-). Each player’s actual expected points and

optimal expected points are calculated by multiplying
their FG% by the corresponding number of shots and the
point-value of the shot (3 points in this case). LPL is the
difference in expectation between the optimal points and
the actual points, which comes out to 0.84.

The left plot of Figure 8 shows LPL over the offensive
half court for Cleveland’s starting lineup, computed using
the posterior mean of &.> Notice that the LPL values are

5 Since LPL; is a function of ¢;, which is latent, the uncertainty in LPL;
is proportional to the posterior distribution of Zle & Figures17and 18
in the Appendix illustrate the distributional nature of LPL.
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JR Smith Tristan Thompson

1

Actual points: ((40 x4)+ (38x3) + (35 %
Optimal points: ((40 X 9)+ (.38 X 4) + (35X

Lineup points lost (LPL): Optimal points

9) + (.32x2) +(25%x1))x3 =20.34
3) + (32%x2) +(25x1))x3 =21.18

Actual points = 0.84

Figure 7: Atoy LPL computation for an arbitrary 3-point court region for the Cleveland Cavaliers’ starting lineup. The players are ordered from
left to right according to FG% (best to worst). Below each player’s picture is the number of actual shots the player took from this location. The
black arrows show how the function g(-) reallocates these shots according to the players’ FG% ranks. The filled gray dots show the number of
shots the player would be allocated according to the proposed optimum. Below the horizontal black line, each player’s actual expected points
and optimal expected points are calculated by multiplying their FG% by the corresponding number of shots and the point value of the shot. LPL

is the difference between the optimal points and the actual points.
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Figure 8: LPL and (PL"™" surfaces for the Cleveland Cavaliers starting lineup.

highest around the rim and along the 3-point line. These
regions tend to dominate LPL values because the density of
shot attempts is highest in these areas.

If we re-normalize LPL with respect to the number of
shots taken in each court cell we can identify areas of in-
efficiency that do not stand out due to low densities of shot
attempts:

LPL;

LPL™ = ———.
271 Ay

©

This formulation yields the average lineup points lost per
shot from region i, as shown in the right plot of Figure 8.
Note that LPL incorporates an intentional constraint—
for any court cell i, A{ is constrained to be a permutation of
A;. This ensures that no single player can be reallocated
every shot that was taken by the lineup (unless a single
player took all of the shots from that region to begin with).

It also ensures that the total number of shots in the redis-
tribution will always equal the observed number of shots
from that location (i.e., ¥, A5 = ¥, Aj, for all i).
Ultimately, LPL aims to quantify the points that could
have been gained had a lineup adhered to the shot allo-
cation strategy defined by A". However, as will be detailed
in Section 4, there is not a 1-to-1 relationship between
‘lineup points’ as defined here, and actual points. In other
words, reducing the total LPL of a team’s lineup by 1
doesn’t necessarily correspond to a 1-point gain in their
actual score. In fact, we find that a 1-point reduction in LPL
corresponds to a 0.6-point gain (on average) in a team’s
actual score. One reason for this discrepancy could be
because LPL is influenced by contextual variables that we
are unable to account for in our FG% model, such as the
shot clock and defensive pressure. Another may be due to a
tacit assumption in our definition of LPL. By holding each
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player’s FG% constant despite changing their volume of
shots when redistributing the vector of FG attempts, we
implicitly assume that a player’s FG% is independent of
their FGA rate. The basketball analytics community
generally agrees that this assumption does not hold—that
the more shots a player is allocated, the less efficient their
shots become. This concept, referred to as the ‘usage-curve’
or ‘skill-curve’, was introduced in Oliver (2004) and has
been further examined in Goldman and Rao (2011). Incor-
porating usage curves into LPL could be a promising area
of future work.

3.3 Player LPL contribution

LPL summarizes information from all players in a lineup
into a single surface, compromising our ability to identify
how each individual player contributes to LPL. Fortu-
nately, we can parse out each player’s contribution to LPL
and distinguish between points lost due to undershooting
and points lost due to overshooting. We define player j’s
LPL contribution (PLC) in court location i as

A - Ay
A5 - A;

PLC; = LPL; x , (10)

5
j=1

where all terms are as defined in the previous section. The
parenthetical term in (10) apportions LPL; among the five
players in the lineup proportional to the size of their indi-
vidual contributions to LPL;. Players who are reallocated
more shots under A compared to their observed number of
shot attempts will have PLC; > 0. Therefore, positive PLC
values indicate potential undershooting and negative
values indicate potential overshooting. As in the case of
LPL, if we divide PLC by the sum of shot attempts in cell i,
we obtain average PLC per shot from location i:

JR Smith Kevin Love

LeBron James

Figure 9: FTCSW surfaces for the Cleveland Cavaliers starting lineup.
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PLG;
5 AU'

j=1

PLC™" = (11)

The PLC"! surfaces for the Cleveland Cavaliers’ 2016~
17 starting lineup are shown in Figure 9. We see that Kyrie
Irving is potentially being under-utilized from beyond the
arc and that LeBron James is potentially over-shooting
from the top of the key, which is harmonious with our
observations from Figure 6. However, it is worth noting that
the LPL plot in Figure 8 shows low LPL values from the mid-
range region since the Cavaliers have a low density of shots
from this area. So while it may be true that LeBron tends to
overshoot from the top of the key relative to his teammates,
the lineup shoots so infrequently from this area that the
inefficiency is negligible.

For every red region in Figure 9 (undershooting) there
are corresponding blue regions (overshooting) among the
other players. This highlights the fact that LPL is made up of
balancing player contributions from undershooting and
overshooting; for every player who overshoots, another
player (or combination of players) undershoots. By nature of
how LPL is constructed, there cannot be any areas where the
entire lineup overshoots or undershoots. For this reason, our
method does not shed light on shot selection. LPL and PLC
say nothing about whether shots from a given region are
efficient or not, instead they measure how efficiently a
lineup adheres to optimal allocative efficiency given the
shot attempts from that region.

4 Optimality — discussion and
implications
We have now defined LPL and given the theoretical inter-

pretation (i.e., overuse and underuse), but we have not yet
established that this interpretation is valid in practice. The

Kyrie Irving Tristan Thompson

PLC per shot
| ]

0.02
0.00

-0.02
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utility of LPL as a diagnostic tool hinges on the answers to
four questions, which we explore in detail in this section:
(1) Do lineups minimize LPL?

(2) Does LPL relate to offensive production?

(3) How can LPL inform strategy?

(4) Is minimizing LPL always optimal?

4.1 Do lineups minimize LPL?

In Figure 8, cell values range from 0 to 0.008, and the sum
over all locations in the half court is 0.68. While this sug-
gests that the Cavaliers’ starters were minimizing LPL, we
need a frame of reference to make this claim with certainty.
The frame of reference we will use for comparison is the
distribution of LPL under completely random shot alloca-
tion. This is not to suggest offenses select shooting strate-
gies randomly. Rather, a primary reason why lineups fail to
effectively minimize LPL is because the defense has the
opposite goal; defenses want to get the opposing lineup to
take inefficient shots. In other words, while the offense is
trying to minimize LPL, the defense is trying to maximize
LPL. By comparing LPL against random allocation, this
provides a general test for whether offenses are able to pull
closer to the minimum than defenses are able to pull to-
ward the maximum (i.e., the worst allocation possible).

In statistical terms, this comparison can be stated as a
hypothesis test. We are interested in testing the null hy-
pothesis that offenses minimize and defenses maximize
LPL with equal magnitudes. We consider a one-sided
alternative—that the offensive minimization outweighs the
defensive response (as measured by LPL). A permutation
test allows us to test these hypotheses by comparing a
lineup’s observed total LPL (summing over all court loca-
tions, Z?’I LPL;, where M is the total number of 1 by 1 ft cells
in the half court) against the total LPL we would expect
under completely random shot allocation. To ensure the
uncertainty in & is accounted for, we simulate variates of
the test statistic T as

M___y M___
T=YLPL_ - YLPL (12)
i=1 i=1

(13)
M5 N
=)y Vi"fij'(Aij_AijT) (14)

i=1j=1

where & ; 1s a sample from player j’s posterior distribution of
FG% in cell i, A;' is the jth element of a random
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permutation of the observed FGA rate vector 4;, and all
other symbols are defined as in (7)—(8). Note that a different
random permutation is drawn for each court cell i. After
simulating 500 variates from the null distribution, we
approximate the one-sided p-value of the test as the pro-
portion of variates that are less than 0.

Figure 10 illustrates this test for the Cleveland Cavaliers’
starting lineup. The gray bars show a histogram of the var-
iates from (12). Bars to the left of the dashed line at O repre-
sent variates for which random allocation outperforms the
observed allocation. The approximate p-value of the test in
this case is 1/500, or 0.002. We can therefore say with high
certainty that the Cleveland starters minimize LPL beyond
the defense’s ability to prevent them from doing so.

The computational burden of performing the test pre-
cludes performing it for every lineup, but we did perform the
test for each team’s 2016-17 starting lineup. The results are
shown in Table 1. Across the NBA’s starting lineups, only
two teams had no variates less than 0O—the Golden State
Warriors and the Portland Trailblazers. The Sacramento
Kings showed the worst allocative efficiency with an
approximate p-value of 0.44 for their starting lineup. Based
on these results we are confident that most lineups employ
shot allocation strategies that minimize LPL to some degree,
though it appears that some teams do so better than others.

4.2 Does LPL relate to offensive production?

We next want to determine whether teams with lower LPL
values tend to be more proficient on offense. In order to
achieve greater discriminatory power, we’ve chosen to
make this assessment at the game level. Specifically, we
regress a team’s total game score against their total LPL

Permutation test of Hy vs Hp

120 —
100 —
80 —|

60 —

Frequency

40 |
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o
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Figure 10: Permutation test for the Cleveland Cavaliers’ 2016-17
starting lineup. The gray bars show a histogram of the variates from
(12). The approximate p-value for the Cavaliers starting lineup

(i.e., the proportion of variates that are less than 0) is 1/500 or 0.002.
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Table 1: Approximate p-values for H° vs. H* for each team’s starting lineup in the 2016—17 NBA regular season.

Approximate p-values for H° vs. H*

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Team GSW POR CLE LAC ATL HOU TOR IND LAL DET DEN NOP CHA UTA OKC
p 0.000 0.000 0.002 0.002 0.014 0.014 0.016 0.020 0.022 0.024 0.028 0.030 0.030 0.038 0.042

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Team DAL MIA MIN BOS NYK ORL SAS BKN PHI MIL WAS PHX MEM CHI SAC
p 0.044 0.046 0.054 0.056 0.058 0.064 0.104 0.106 0.130 0.134 0.144 0.148 0.170 0.210 0.442
generated in that game, accounting for other relevant Eang ~N (0,07), (19)

covariates including the team’s offensive strength, the
opponent’s defensive strength, and home-court advan-
tage. This framework is analogous to the model proposed
in Dixon and Coles (1997).

We calculate game LPL (GLPL) by first dividing the
court into three broad court regions (restricted area, mid-
range, and 3-pointers). Then, for a given game and lineup,
we calculate GLPL in each of these court regions (indexed
by ¢) by redistributing the lineup’s observed vector of shot

attempts using on a weighted average of each player’s E [

GLPL, = il Ve fo(&)) - (A5 - Ag) (15)
where
QNS "

In (15), wy is a weight proportional to player j’s total
observed shot attempts in court cell i over the regular
season. The notation Y ;.. means we are summing over all
the 1 by 1 ft grid cells that are contained in court region c.
Finally, for a given game g and team a, we calculate the
team’s total game LPL (TGLPL) by summing GLPL. over all
court regions ¢ and all lineups £:

La
TGLPL, = Y Y GLPL! (17)

=1 ceC

where C = {restricted area, mid-range, 3-pointers} and L, is
the total number of team a’s lineups. This process is carried
out separately for the home and away teams, yielding two
TGLPL observations per game.

Equipped with a game-level covariate measuring
aggregate LPL, we model team a’s game score against
opponent b in game g as

Scoregp, =p+ag+ S, +y x I(Homeyg ) + 6 x TGLPL (18)
+ €abg

where u represents the global average game score, a, is
team a’s offensive strength parameter, 8, is team b’s
defensive strength parameter, y governs home court
advantage, 0 is the effect of TGLPL, and €, is a nor-
mally distributed error term. 0 is the parameter that we
are primarily interested in. We fit this model in a
Bayesian framework using Hamiltonian Monte Carlo
methods implemented in Stan (Carpenter et al. 2017).
Our prior distributions are as follows: u~A(100,10%);
&g, B, 7,0~ N (0,10%); 0~ Gamma (shape =2,rate=0.2).

The 95% highest posterior density interval for 0 is
(-1.08, —0.17) and the posterior mean is —0.62.° Therefore,
we estimate that for each additional lineup point lost, a
team loses 0.62 actual points. Put differently, by shaving
roughly 3 points off of their TGLPL, a team could gain an
estimated 2 points in a game. Given that 10% of games
were decided by 2 points or less in the 2016—-17 season, this
could have a significant impact on a team’s win-loss re-
cord and could even have playoff implications for teams
on the bubble. Figure 11 shows the estimated density of
actual points lost per game for every team’s 82 games in
the 2016-17 NBA regular season (i.e., density of
0 x TGLPLyg, g € {1, ..., 82} for each team a). Houston was
the most efficient team, only losing about 1 point per game
on average due to inefficient shot allocation. Washington,
on the other hand, lost over 3 points per game on average
from inefficient shot allocation.

4.3 How can LPL inform strategy?

At this point, we offer some ideas for how a coach might
use these methods to improve their team’s offense. First,
for lineups with high LPL, coaches could explore the

6 Figure 19 in the Appendix shows the posterior distribution of 6.
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corresponding PLC plots to ascertain which players are
primarily responsible. If the coach determines that the
LPL values do indeed represent areas of inefficiency, they
could consider interventions targeting the player’s
shooting habits in these areas. This short-term interven-
tion could be coupled with long-term changes to their
practice routines; coaches could work with players on
improving their FG% in the areas shown by the PLC plots.
Also, by exploring lineup PLC charts, coaches could
identify systematic inefficiency in their offensive
schemes, which could prompt changes either in whom to
draw plays for or whether to change certain play designs
altogether.

Coaches are not the only parties who could gain value
from these metrics; players and front office personnel
could utilize them as well. Players could use PLC plots to
evaluate their shooting habits and assess whether they
exhibit over-confident or under-confident shot-taking
behavior from certain areas of the court. Front office
personnel may find trends in the metrics that indicate a
need to sign players that better fit the coach’s strategy. LPL
and PLC could help them identify which players on their
roster to shop and which players to pursue in free agency or
the trade market.

Figure 11: Estimated density of actual points
lost per game for every team’s 82 games in
the 2016-17 NBA regular season.

o~

Consider these ideas in context of the Utah Jazz LPL/
PLC charts for the 2016-17 regular season shown in
Figure 12.

On reviewing the LPL plot for the starting lineup, the
coach might flag the left baseline and top of the key as
areas of potential inefficiency to investigate. On exploring
the corresponding PLC plots, they would see Derrick Fa-
vors as the driving force behind the high LPL numbers from
these regions. Interestingly, from the 2013-14 season
through 2016-17, the Derrick Favors baseline and elbow
jump shots were go-to plays for the Jazz. Across these four
seasons, Favors took over 1500 mid-range shots at an
average of 0.76 points per shot (PPS).

In the 2017-18 and 2018-19 seasons, the Jazz drastically
altered Favors’ shot policy from the mid-range. Beginning in
2017, the Jazz started focusing on 3-pointers and shots at the
rim, a trend that was becoming popular throughout the
league. As part of this change in play-style, Utah tried
turning Favors into a stretch four’; he went from taking a

7 A stretch four is a player at the power forward position that can
generate offense farther from the basket than a traditional power
forward.
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Utah 2016-17 Starting Lineup
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Figure 12: Utah Jazz 2016-17 starting lineup LPL, LPL""”, and PLC" " surfaces.

Russell Westbrook Andre Roberson Steven Adams

Figure 13: Oklahoma City 2016-17 starting lineup PLC""*" surfaces.

total of 21 3-point shots over the previous four seasons, to 141
3-point shots in these two seasons alone. Unfortunately, their
intervention for Favors appears to have been misguided; his
average PPS for these 141 shots was 0.66. The front office
opted not to re-sign Favors at the end of the 2018-19 season.
Perhaps this six-year process could have been expedited had
LPL and PLC been available to the coaches and front office
staff.

4.4 |s minimizing LPL always optimal?

While we have demonstrated that lower LPL is associated
with increased offensive production, we stress that LPLis a
diagnostic tool that can be used to inform basketball ex-
perts rather than as a prescriptive measure that should be
strictly adhered to in all circumstances. As mentioned

Derrick Favors Rudy Gobert
PLC per shot
5 0.050
0.025
0.000
-0.025
. -0.050
Victor Oladipo Domantas Sabonis
C per shot
L | 0.10
0.05
0.00
-0.05
||

previously, the LPL and PLC values presented in this paper
are influenced by contextual variables that we are unable
to account for because they are not available in public data
sources, such as the shot clock and defensive pressure.
Additionally, there are certain game situations where
minimizing LPL may be sub-optimal.

One such situation is illustrated in Figure 13, which
shows the PLC™ surfaces for the Oklahoma City 2016-17
starting lineup. The first panel from the left in this figure
shows positive PLC values for Russell Westbrook in the
corner 3-point regions, suggesting that Westbrook should
be taking more shots from these areas. However, many of
these corner 3-point opportunities were created by West-
brook driving to the basket, drawing extra defenders to-
ward him, then kicking the ball out to an open teammate in
the corner. Of course, Westbrook cannot both drive to the
rim and simultaneously pass to himself in another area of
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the court. In this case, strictly minimizing LPL would
reduce the number of these drive-and-kick plays, poten-
tially attenuating the Thunder's offensive firepower. Shot-
creation is not accounted for by LPL and should be care-
fully considered when exploring LPL and PLC.

There are game theoretic factors to be considered as
well. Beyond the defensive elements discussed in
Section 4.1, rigid adherence to minimizing LPL could lead
to a more predictable offense and thus make it easier to
defend (D’Amour et al. 2015). Needless to say, offensive
game-planning should be informed by more than LPL
metrics alone.

5 Conclusion

Our research introduces novel methods to evaluate allocative
efficiency spatially and shows that this efficiency is corre-
lated with game scores. We have made an empirical
demonstration of our methods available online, allowing our
methods to be immediately accessible. Also, since LPL and

JR Smith

Kevin Love Kyrie Irving
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PLC do not depend on specific models for FG% and FGA rate,
LPL and PLC could readily be calculated at G-league, NCAA,
and international levels using a simplified model of FG% and
FGA rate.

As most professional basketball teams have access to
proprietary data, many of the contextual variables that we
do not account for could be included in the FG% and FGA
rate models, which could make the proposed shot distri-
bution proposed by LPL a more reliable optimum to seek.
Additionally, by pairing LPL with play call data coaches
could gain insight into the efficiency of specific plays. Even
without access to these data, it may be possible to recreate
some contextual features that aren’t explicitly provided by
the NBA’s public-facing API. For instance, shot clock times
could be estimated using game clock times given in the
play-by-play data.

There are interesting academic questions that stem
from this paper as well. Future studies could investigate
the sensitivity of our metrics to model parameters that we
fixed, such as the number of basis functions in the NMF and
the number of neighbors in the CAR prior. We could also
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Figure 14: Top: Empirical FG% ranks for the Cleveland Cavaliers starting lineup. Middle: Empirical FGA ranks. Bottom: Rank correspondence.
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Figure 15: Top: Empirical LPL and LPL*" for the Cleveland Cavaliers starting lineup. Bottom: Empirical PLC for the Cleveland Cavaliers starting

lineup.
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investigate the robustness of LPL to alternate FG% models.
As mentioned previously, we do not account for usage
curves in our analysis. Doing so would turn LPL into a
constrained optimization problem, which would be an
interesting challenge to tackle. Also, using LPL to inform
player-specific shot policy changes, entire seasons could
be simulated using the method in Sandholtz and Bornn
(2020) to quantify the impact of specific shot allocation
changes on point production. We hope that the methods
introduced in this paper will be built upon and improved.
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Appendix

A.1 Empirical implementation

To illustrate some important considerations associated
with our approach, we present an example of LPL and PLC
using empirical FG% and FGA rates. This example
demonstrates that our metrics are agnostic to the
underlying FG% model.

We examine the Cleveland Cavaliers’ starting lineup as
discussed in the main text. In order to obtain FG% and FGA
rate estimates, we divide the court into 12 discrete regions
and calculate the empirical FG%s and FGA rates for each
player within these regions. We defined these regions
based on our understanding of the court, but it is worth
noting that defining these regions requires many of the
same considerations as with any histogram style estimator;
namely, that increasing the number of regions will
decrease bias at the expense of increasing variance. In
some cases, a player may have only one or two shots within
an area, resulting in either unrealistically high or low FG%
estimates. As an ad hoc solution to this, we give all players
one made field goal and five field goal attempts within each
region, which means that players with just a handful of
shots in a region will have their associated FG% anchored
near 20%. For the field goal attempt estimates, we simply
count up the number of attempts for each player within
each section, and normalize them to get the attempts per
36 min. With these FG% and FGA rate estimates, we can
replicate the analysis detailed in Section 3.
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Figure 14 shows the empirical ranks for this lineup, as well
as the rank correspondence. Generally, it shows the same
patterns as the model-based analysis in Figures 5 and 6.
However, there are some key differences, including Tristan
Thompson having a higher field goal percentage rank from
the right midrange and a corresponding reduction in rank for
Kevin Love in the same area. This pattern is also manifest in
Figure 15, which shows the empirical LPL. We observe that
most lineup points appear to be lost in the right midrange and
in above the break three point shots. Finally, considering the
empirical PLC in Figure 15, we notice that in addition to the
Love-Thompson tradeoff in the midrange, JR Smith appears
to be overshooting from the perimeter, while Kyrie Irving and
LeBron James both exhibit undershooting.

The persistence of the Love-Thompson connection in the
midrange in this empirical analysis, and its divergence from
what we saw in the model based analysis, merits a brief
discussion. Kevin Love and Tristan Thompson both had a
low number of shots from the far-right midrange region,
with Love shooting 8 for 26 and Thompson shooting 4 for 6.
Because they both shot such a low amount of shots, even
with the penalty of one make and four misses added to each
region, Thompson appears far better. This highlights the
fact that although LPL and PLC are model agnostic, the
underlying estimates for FG% do matter and raw empirical
estimates alone may be too noisy to be useful in calculating
LPL. One simple solution may be to use a threshold and only
consider players in a region if the number of their field goal
attempts passes that threshold.

A.2 Additional figures
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Figure 17: Histogram of Z?":i LPL; for the Cleveland Cavaliers starting
lineup. 500 posterior draws from each &;; were used to compute the
500 variates of ¥, LPL; comprising this histogram.
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Figure18: Left: 20% quantile LPL surfaces for the Cleveland Cavaliers starting lineup. Middle: median LPL surfaces. Bottom: 80% quantile LPL

surfaces. The top rows show LPL per 36 min while the bottom rows show LPL*".
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Figure 19: Posterior distribution of the effect for TGLPL in model
(17)-(18) described in Section 4.2.
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