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1. Introduction	
	
In	the	2017-18	NBA	playoffs,	Russell	Westbrook	scored	46	points	on	43	shot	attempts	in	a	96-91	loss	
to	 the	Utah	 Jazz,	 ending	 the	Oklahoma	City	Thunder's	 season.	 	 At	 the	 time,	many	popular	media	
figures	conjectured	that	having	one	player	dominate	field	goal	attempts	in	this	way	would	limit	the	
Thunder's	success.		While	scoring	46	points	in	a	playoff	basketball	game	is	an	impressive	feat	for	any	
one	player,	its	impact	on	the	win	column	is	moderated	by	the	fact	that	it	required	43	attempts.		At	its	
core,	this	critique	is	about	efficiency.			

Modern	 discussion	 around	 efficiency	 in	 the	 NBA	 typically	 focuses	 on	 either	 individual	 player	
efficiency	or	shot	selection.		Conceptually,	the	foundation	for	shot	selection	efficiency	is	simple:	shots	
at	the	rim	and	3-point	shots	have	the	highest	expected	points	per	shot,	so	teams	should	prioritize	
these	 high-value	 shots.	 	 The	 idea	 underlying	 individual	 player	 efficiency	 is	 also	 straightforward;	
scoring	more	points	on	the	same	number	of	shot	attempts	increases	a	team’s	chances	of	winning.		
However,	 implicit	 in	any	discussion	of	player	efficiency	 is	 the	 idea	 that	 inefficient	players	have	a	
negative	 impact	 because	 basketball	 is	 a	 team	 sport.	 	 We	 are	 concerned	 with	 efficiency	 not	 just	
because	a	given	player	 is	 inefficient,	but	because	 inefficient	players	 take	shot	opportunities	away	
from	teammates	that	may	have	higher	value.		In	other	words,	if	Westbrook	was	surrounded	by	dismal	
shooters	his	43	shot	attempts	might	appear	more	defensible,	but	if	his	inordinate	number	of	attempts	
prevented	 highly	 efficient	 shots	 from	 other	 players,	 then	 he	 has	 caused	 shots	 to	 be	 inefficiently	
distributed	among	the	players	on	the	team	and	decreased	their	winning	potential.	 	This	aspect	of	
efficiency—the	allocation	of	shots	within	a	lineup—is	the	primary	focus	of	our	paper.			

Allocative	efficiency	is	fundamentally	a	spatial	problem.		The	distribution	of	shots	within	a	lineup	is	
highly	dependent	on	court	location.	 	For	example,	while	the	Thunder	might	want	to	allocate	more	
shots	to	Steven	Adams	near	the	rim,	they	probably	wouldn't	want	him	taking	more	shots	beyond	the	
3-point	 line.	 	 Despite	 the	 importance	 of	 spatial	 context,	 there	 are	 very	 few	 allocative	 efficiency	
analyses	which	have	explicitly	accounted	for	this	critical	factor.		Our	unique	contribution	with	this	
work	 is	a	method	 to	explore	allocative	efficiency	 spatially.	 	We	use	a	novel	method	 to	measure	a	
lineup's	shot	distribution	optimality	over	the	court.		Then,	using	these	metrics,	we	quantify	how	many	
points	are	being	lost	through	inefficient	spatial	lineup	shot	allocation,	visualize	where	they	are	being	
lost,	and	identify	which	players	are	responsible.	

1.1. Related	Work	
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In	recent	years,	the	emphasis	on	shot	selection	(i.e.	the	quality	of	shots	as	determined	by	the	shooter,	
shot	location,	and	defensive	pressure	at	the	time	of	the	shot)	has	led	to	the	development	of	many	
metrics	which	aim	to	measure	this	aspect	of	a	shooting	decision,	such	as	true	shooting	percentage	
[1],	qSQ,	and	qSI	[2].		Additionally,	metrics	have	been	developed	to	quantify	player	efficiency,	such	as	
Hollinger's	player	efficiency	rating	[3]	or	Oliver's	usage	curves	[4].	 	While	these	metrics	implicitly	
account	 for	 team	 context,	 there	 have	 been	 relatively	 few	 studies	which	 have	 looked	 at	 shooting	
decisions	explicitly	in	context	of	lineup,	and	none	spatially.		An	example	of	a	non-spatial	allocative	
efficiency	analysis	of	shot	attempts	in	the	NBA	is	the	work	of	Goldman	and	Rao	in	[5].		They	model	
the	decision	to	shoot	as	a	dynamic	mixed-strategy	equilibrium	weighing	both	the	continuation	value	
of	a	possession	and	the	outside	option	of	a	teammate	shooting.	 	Cervone	et.	al.'s	‘shot	satisfaction’	
metric	[6]	is	another	example	of	analyzing	shooting	decisions	in	context	of	lineup.		However,	since	
shot	satisfaction	is	marginalized	over	the	allocative	and	spatial	components,	these	factors	can't	be	
explored	 using	 this	metric	 alone.	 	 Essentially,	 we	 are	 interested	 in	 disaggregating	 the	 allocative	
efficiency	component	of	shot	satisfaction	smoothly	in	space.			
	
1.2. Publicly	Available	Data	
All	of	our	data	is	publicly	available	through	the	NBA	stats	API	(stats.nba.com).		Shot	x,	y	locations	are	
available	through	the	‘shotchartdetail'	API	endpoint	whereas	lineup	data	can	be	gathered	from	the	
‘playbyplayv2'	endpoint.		Using	the	play-by-play	data,	we	can	determine	the	lineup	on	the	court	at	
any	point	in	the	game	and	merge	this	with	the	shot	data	to	determine	which	players	were	on	the	
court	for	each	shot.		Additionally,	shots	are	tagged	in	the	API	with	various	labels	(e.g.	dunk,	layup,	
etc.).		Since	tip-ins	and	put-backs	are	shots	that	the	offense	cannot	allocate	or	control	in	the	same	way	
they	do	for	half	court	sets,	we	removed	shots	with	these	labels	from	our	analysis.		Code	used	to	collect	
the	data	and	perform	an	empirical	version	of	the	analysis	presented	in	this	paper	can	be	found	on	the	
author’s	GitHub	page:	https://github.com/nsandholtz/lpl.	
	
2. Models	
	

2.1. Estimating	FG%	and	FGA	Rate	Surfaces	
The	foundation	of	our	project	rests	on	spatial	estimates	of	both	player	field	goal	percentages	(FG%)	
and	 field	 goal	 attempt	 (FGA)	 rates.	 	 Following	 the	 methodology	 in	 [6],	 we	 build	 a	 Bayesian	
hierarchical	model	to	estimate	the	probability,	!,	that	a	shot	is	made	by	player	j	at	location	z	with	the	
model		

log %
!

1 − !
( = *+ + -

(/)(1)	

where	 -(/)	 is	 a	 player-specific	 Gaussian	 process.	 	 To	 make	 estimation	 of	 -(/)	 computationally	
tractable,	 we	 use	 a	 low-dimensional	 basis	 function	 representation	 [7]	 that	 sets	 -(/)(1) =
	∑ 4

5

(/)6
578 95(1),	where	95(⋅)	represents	basis	function	d,	45

(/)	is	a	player-specific	weight,	and	D	is	
the	total	number	of	basis	functions.		We	define	the	basis	function	as	95(⋅) = ;

5

(/)
<(1),	where	<(⋅)	is	

a	=+	length	vector	containing	the	output	of	the	piecewise	linear	function	used	by	Lindgren	in	[8],	and	
;
5

(/)	 is	 a	 1 × =+	 vector	 of	 weights	 for	 player	 j	 from	 the	 non-negative	matrix	 factorization	 [9]	 of	
coefficients	from	independent	Poisson	regressions	for	their	shot	counts.			Next,	by	clustering	player	
shot	profiles	and	creating	a	player	adjacency	matrix,	we	apply	conditionally	autoregressive	(CAR)	
priors	[10]	to	the	basis	function	weights	4

5

(/).		The	end	result	of	this	process	is	a	model	that	varies	
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spatially	 and	 allows	 us	 to	 predict	 field	 goal	 percentages	 for	 all	 players	 from	 any	 location	 in	 the	
offensive	half	court.	

FGA	surfaces	are	estimated	by	smoothing	a	player's	empirical	shot	attempts	using	a	Poisson	point	
process	 [11].	 	We	 then	normalize	 the	 surfaces	 to	 FGA	per	 100	possessions,	 allowing	 us	 to	make	
meaningful	comparisons	between	players	who	differ	in	the	number	of	minutes	played.		The	FG%	and	
FGA	prediction	surfaces	used	in	the	rest	of	this	paper	utilize	projections	onto	a	spatial	grid	of	1	ft	by	
1	 ft	 cells,	 producing	 surfaces	 like	 those	 shown	 in	Figure	1	 for	 Stephen	Curry	of	 the	Golden	State	
Warriors.	

	
Figure	1.		Estimated	FG%	surface	(left)	and	FGA	per	100	possessions	(right)	in	the	starting	GSW	lineup	for	Stephen	Curry	
in	the	NBA	2016-2017	regular	season.	

In	order	to	have	sufficient	data	to	reliably	estimate	the	FG%	surfaces,	we	assume	that	these	surfaces	
are	lineup	independent.		We	recognize	this	assumption	may	be	violated	in	some	cases,	as	players	who	
draw	a	lot	of	defensive	attention	can	improve	the	FG%	of	their	teammates	by	providing	them	with	
more	 unguarded	 shot	 opportunities.	 	 In	 future	 work,	 our	 analysis	 could	 be	 augmented	 with	
proprietary	data	(e.g.	nearest	defender	distance)	to	account	for	defensive	pressure	when	estimating	
FG%.				

In	 contrast	 to	 the	 FG%	 surfaces,	 FGA	 rate	 varies	 wildly	 depending	 on	 the	 lineup.	 	 Consider	 the	
Oklahoma	City	Thunder	example	in	the	introduction—Westbrook's	teammates'	attempt	rates	will	
change	drastically	based	on	whether	Westbrook	is	on	or	off	the	court.		Fortunately,	because	we	are	
focused	on	smoothing	empirical	attempts	rather	than	modeling	unobserved	parameters,	obtaining	
lineup-specific	FGA	surfaces	is	comparatively	simple.		The	reasons	for	this	empirical	smoothing	will	
become	clear	in	the	following	section.	

2.2. Spatial	Rankings	Within	Lineup	
With	estimates	of	FG%	and	FGA	rate	surfaces	for	every	player,	we	can	rank	players	on	these	metrics	
relative	to	their	four	teammates	in	a	given	lineup	spatially	over	the	court.	For	a	given	lineup,	let	?@/A	
be	the	rank	(ranging	from	1	to	5)	of	player	B′s	FG%	relative	to	his	four	teammates	in	court	location	D,	
where	D	 ∈ {1, … , I}.	Let	?@/K	be	equivalently	defined	for	FGA	rate.		We	estimate		these	rank	surfaces	
LM⋅/
A
= (?̂8/

A
, … , ?̂O/

A
)	and	LM⋅/K = P?̂8/

K
, … , ?̂O/

K
Q	by	ranking	the	posterior	means	of	our	models	for	FG%	and	

FGA	within	each	cell.	Figure	2	shows	these	rank	surfaces	for	the	starting	lineup	of	the	2016-17	Golden	
State	Warriors;	 the	 top	row	shows	 the	FG%	rank	surfaces	while	 the	bottom	row	shows	 the	rank	
surfaces	for	FGA	rate.	
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Figure	2.	GSW	2016-17	starting	lineup	FG%	rank	surfaces	(top	row)	and	FGA	rank	surfaces	(bottom	row).	

As	expected,	Kevin	Durant,	Klay	Thompson,	and	Stephen	Curry	consistently	rank	as	the	top	three	
shooters	over	 the	entire	court,	with	a	surprising	exception	 from	the	 left	mid-range	region	where	
Pachulia	surpasses	Curry.	We	can	also	see	that	the	top	three	shooters	for	Golden	State	tend	to	take	
the	most	shot	attempts	across	the	court,	with	the	exception	of	the	restricted	area	and	a	small	area	at	
the	top	of	the	arc	where	Green	takes	the	most	shots.		
		
In	the	following	section	we	propose	a	metric	based	on	redistributing	the	observed	shots	according	
to	a	proposed	optimum.		In	doing	so,	we	require	each	player's	FGA	surface	to	strongly	adhere	to	his	
observed	data	while	still	being	smooth	enough	to	yield	a	plausible	surface	of	ranks.		An	example	may	
help	make	this	concept	clearer.	 	 Imagine	that	Zaza	Pachulia	only	took	one	3-point	shot	the	entire	
2016-17	season	(in	reality	he	took	two)	and	that	none	of	his	teammates	happened	to	take	any	shots	
in	the	exact	same	1	ft	square.		If	we	simply	aggregated	shot	attempts	to	the	nearest	1	ft	by	1	ft	grid	
cell,	we	would	conclude	that	Pachulia	is	a	more	prolific	shooter	in	this	area	than	every	other	player	
on	the	Warriors.	 	We	know	that	this	 is	not	true;	Pachulia	attempted	just	a	single	3-point	shot	the	
entire	 season.	 	 By	 smoothing	 the	 FGA	 surfaces,	 small	 anomalies	 like	 this	 are	 prevented	 from	
muddling	 the	FGA	rankings	while	still	allowing	us	 to	utilize	 these	surfaces	as	a	pseudo-empirical	
distribution	of	a	player's	observed	shots.	
	
3. Measuring	Spatial	Allocative	Efficiency	
	

The	strong	correspondence	between	the	FG%	and	FGA	rank	surfaces	shown	in	Figure	2	is	no	surprise;	
all	other	factors	being	equal,	teams	would	naturally	want	their	most	skilled	shooters	taking	the	most	
shots	and	the	worst	shooters	taking	the	fewest	shots	in	any	given	location.		It	is	the	strength	of	this	
relationship	that	we	are	interested	in	measuring,	for	which	we	now	propose	a	metric.				
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3.1. Rank	Correspondence	
Using	the	ranks	estimated	in	Section	2.2	we	can	difference	each	player's	FG%	rank	surface	from	their	
FGA	rank	surface,	LM⋅/K − LM⋅/A ,	to	obtain	a	surface	which	measures	how	strongly	each	player's	FG%	rank	
matches	their	FGA	rank.		Figure	3	shows	these	surfaces	for	the	Warriors	2016-17	starting	lineup.			
	

	
Figure	3.	GSW	2016-17	starting	lineup	rank	correspondence	surfaces,	which	are	determined	by	differencing	the	FGA	rank	
surfaces	(per	100	possessions)	from	the	FG%	rank	surfaces.	

Notice	in	the	legend	of	Figure	3	that	we	label	deviations	from	0	as	sub-optimal;	positive	values	of	
rank	correspondence	are	labeled	as	‘under-use’	and	negative	values	are	labeled	as	‘over-use’.		We	are	
assuming	that	any	deviation	from	perfect	correlation	in	the	FG%	and	FGA	ranks	is	indicative	of	sub-
optimal	lineup	performance.		Due	to	confounding	variables	(e.g.	defensive	pressure)	this	assumption	
may	not	hold	 in	 some	situations,	which	we	discuss	 in	detail	 in	Section	3.3.	 	However,	under	 this	
interpretation,	Green	appears	to	be	nearly	universally	overshooting,	especially	at	the	top	of	3-point	
line	and	to	the	immediate	right	and	left	of	the	basket.		We	also	see	that	Curry,	Thompson,	Durant,	and	
Pachulia	all	appear	to	be	underutilized	over	large	sections	of	the	court.			
	
3.2. Lineup	Points	Lost	
By	reducing	the	FG%	and	FGA	estimates	to	ranks	we	compromise	the	magnitude	of	player-to-player	
differences	within	lineups.		In	other	words,	focusing	solely	on	ordering	renders	the	distance	between	
player	FG%'s	irrelevant.	 	For	example,	if	Curry,	Thompson,	and	Pachulia	are	ranked	one,	two,	and	
three,	 respectively,	 then	 the	 ranked	 distance	 between	 Curry	 and	 Thompson	 is	 equivalent	 to	 the	
ranked	distance	between	Thompson	and	Pachulia,	despite	 the	 fact	 that	FG%'s	 for	Thompson	and	
Curry	are	probably	closer	 in	value	than	the	FG%'s	for	Thompson	and	Pachulia.	 In	this	section	we	
introduce	lineup	points	lost	(LPL)	and	player	LPL	contribution	(PLC),	which	measure	deviation	from	
the	 optimal	 shot	 allocation	 (i.e.	 perfect	 rank	 correspondence)	while	 retaining	 the	magnitudes	 of	
player	differences	in	FG%	and	FGA.			
	
LPL	is	defined	as	the	difference	in	expected	points	between	the	actual	distribution	of	shot	attempts	
from	 a	 given	 lineup	 and	 the	 expected	 points	 had	 those	 same	 shots	 been	 taken	 according	 to	 the	
optimal	redistribution.		Formally,	we	calculate	LPL	in	the	Dth	cell	as		

LPL@ =T OEP@/ − AEP@/

X

/78

	

where	 OEP@/ 	 and	 AEP@/ 	 are	 the	 optimal	 and	 actual	 expected	 points	 for	 player	 B	 in	 grid	 cell	 D,	
respectively.		We	set	OEP@/ = Y@ ×	FG%

]
@/ × ^@(_̀ a

b
)
	and	AEP@/ = Y@ ×	FG%

]
@/ × ^@/	,	where	Y@ 	is	the	

point	value	of	a	made	shot	from	cell	D.		FG%]
@/ 	is	the	model-based	FG%	for	player	B	and	^@/ 	is	player	

B's	smoothed	FGA	per	100	possessions	in	cell	D.		Importantly,	B	is	sorted	so	that	B = 1	corresponds	to	
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the	player	with	the	highest	FGA	rate	in	location	B	for	a	given	lineup.	The	term	^
@(_̀ a

b
)
	is	the	?̂@/Ath	order	

statistic	of	the	shot	attempt	vector	cd⋅ = (^@8, … , ^@X),	which	functions	as	an	index	to	redistribute	the	
shot	attempt	vector	according	to	the	optimum.		Note	that	by	our	definition	of	the	optimum,	LPL@ ≥ 0	
and	if	?̂@/A = ?̂@/

K	for	all	B	then	LPL@ = 0.		Lastly,	LPL@ 	is	scaled	to	a	per	100	possessions	basis.	
	
If	we	divide	LPL@ 	by	the	sum	of	the	shot	attempts	in	cell	D	(LPL@/∑ ^@/

X
/78 )	this	yields	LPL	per	shot.		

The	interpretation	of	this	metric	is	a	bit	more	abstract—it	is	the	lineup	points	lost	per	average	̀ lineup	
shot'	from	region	D.		LPL	per	100	and	LPL	per	shot	surfaces	for	the	starting	lineups	of	the	2016-17	
Golden	State	Warriors	and	Denver	Nuggets	are	shown	in	Figure	4.	
	

	
Figure	4.	LPL	per	shot	and	LPL	per	100	possessions	for	the	Golden	State	Warrior's	and	Denver	Nugget's	2016-17	starting	
lineups.		Note	that	the	scales	are	not	equal	between	the	teams.	

Both	the	Golden	State	and	Denver	lineups	appear	to	have	their	greatest	inefficiencies	directly	around	
the	basket,	but	there	are	noticeable	differences.		LPL	per	shot	is	highest	for	Denver	in	the	left	(relative	
to	the	basket)	corner-3	region,	which	is	the	result	of	a	large	quantity	of	shots	taken	by	Emmanuel	
Mudiay,	who	had	a	poor	FG%	from	this	area.	Golden	State	has	the	highest	LPL	per	shot	in	regions	
where	Draymond	Green	and	Zaza	Pachulia	tended	to	take	the	most	shots.	
	
3.3. Player	LPL	Contribution	
While	LPL	summarizes	information	from	all	five	players	into	a	single	surface,	we	can	parse	out	each	
player's	contribution	to	LPL	and	distinguish	between	points	lost	due	to	undershooting	and	points	
lost	due	to	overshooting.		We	define	player	B's	LPL@ 	contribution	(PLC)	as	
	

PLC@/ = LPL@ ×
OEP@/ − AEP@/

∑ |OEP@/ − AEP@/|
X
/78
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The	second	term	in	the	right-hand	side	of	the	equation	apportions	LPL@ 	among	the	5	players	in	the	
lineup	proportional	 to	 the	 size	 of	 their	 individual	 contributions	 to	LPL@ .	 Players	whose	 expected	
points	under	the	optimum	is	larger	than	their	actual	expected	points	in	cell	D	will	have	PLC@/ > 0,	
hence	positive	PLC	values	indicate	that	a	player	is	undershooting.		On	the	other	hand,	PLC	values	less	
than	0	indicate	overshooting.		As	in	the	case	of	LPL,	if	we	divide	PLC@/ 	by	the	sum	of	all	lineup	shot	
attempts	in	cell	D	(PLC@// ∑ ^@/

X
/78 )	this	yields	PLC	per	average	lineup	shot.	The	PLC	per	shot	surfaces	

for	the	Warriors	2016-17	starting	lineup	are	shown	in	Figure	5.	
	

	
Figure	5.	PLC	per	shot	surfaces	for	the	GSW	2016-17	starting	lineup.			

Notice	that	for	every	red	region	(under-usage)	there	are	corresponding	blue	regions	(over-usage)	
among	 the	 other	 players.	 	 This	 highlights	 the	 fact	 that	 LPL	 is	 made	 up	 of	 balancing	 player	
contributions	 from	 undershooting	 and	 overshooting;	 for	 every	 player	 who	 overshoots	 another	
player,	(or	combination	of	players),	undershoots.		For	example,	Figure	5	shows	that	Thompson	and	
Curry	are	both	undershooting	in	a	region	at	the	top	of	the	3-point	line	where	Green	is	overshooting,	
suggesting	this	lineup	would	be	more	efficient	if	some	of	Green's	shots	were	reallocated.		Note	that	
by	 the	 nature	 of	 how	 LPL	 is	 constructed,	 there	 cannot	 be	 any	 areas	 where	 the	 entire	 lineup	
overshoots	or	undershoots.		For	this	reason,	our	method	does	not	shed	light	on	shot	selection.		LPL	
and	PLC	say	nothing	about	whether	shots	from	a	given	region	are	efficient	or	not,	rather	they	measure	
how	efficiently	a	lineup	adheres	to	optimal	allocative	efficiency	for	that	given	region.	
	
3.4. Potential	Confounding	
Any	conclusions	about	a	player's	allocative	efficiency	based	on	these	metrics	must	be	made	carefully.		
LPL	and	PLC	are	influenced	by	a	number	of	contextual	variables	which	we	cannot	account	for	in	our	
analysis,	including	defensive	pressure,	time	remaining	on	the	shot	clock,	play	calls,	and	instructions	
from	coaches.		These	confounding	factors	introduce	situations	where	interpreting	high	or	low	PLC	
values	directly	to	sub-optimal	usage	may	be	incorrect.		For	example,	consider	the	starting	lineup	PLC	
surfaces	for	the	Oklahoma	City	Thunder	shown	in	Figure	6.			

Stephen Curry Kevin Durant Draymond Green Zaza Pachulia Klay Thompson

−0.02 (Over−Use)
−0.01
0
0.01
0.02 (Under−Use)

PLC per Shot



	

																																																															8	

2019	Research	Papers	Competition		
Presented	by:	

	
Figure	6.	PLC	per	shot	surfaces	for	the	GSW	2016-17	starting	lineup.	
	
Notice	that	Westbrook	has	a	positive	contribution	in	both	the	right	and	left	corner	3-point	locations.		
Interpreting	these	as	areas	of	under-utilization	would	be	erroneous	because	many	of	these	corner	3-
point	opportunities	were	created	by	his	own	initial	drive	to	the	basket	and	subsequently	kicking	the	
ball	 out	 to	 a	 teammate	 in	 the	 corner.	 	Obviously,	Westbrook	 can't	 both	drive	down	 the	 lane	 and	
simultaneously	pass	to	himself	in	the	corner.			
	
Figure	6	also	shows	a	number	of	ways	in	which	LPL	correctly	indicates	areas	of	sub-optimal	shot	
allocation.		Russell	Westbrook	generally	appears	to	overshoot	whereas	Victor	Oladipo	is	shown	to	
undershoot	over	large	areas	of	the	court.		Perhaps	the	Thunder	could	have	gained	more	utility	from	
Oladipo	prior	to	his	trade	had	they	been	more	aware	of	these	insights.		Additionally,	the	Thunder	may	
have	benefited	by	having	someone	other	than	Roberson	fill	the	role	as	the	primary	corner	3-point	
shooter	in	drive-and-kick	plays.			
	
4. League	Results	
	

We	now	report	LPL	results	for	the	entire	league.	 	 In	order	to	avoid	low-minute	abnormalities,	we	
restricted	our	analysis	in	these	sections	to	lineups	that	played	at	least	50	minutes	over	the	course	of	
the	2016-17	regular	season.	 	Table	1	shows	the	players	with	the	 lowest	and	highest	PLC	per	100	
values	in	the	2016-17	NBA	regular	season,	aggregated	over	three	court	regions:	rim,	mid-range,	and	
three.			

Table	1.	Players	with	the	lowest	and	highest	PLC	per	100	possession	values	in	the	2016-17	NBA	regular	season,	aggregated	
across	three	court	regions	(rim,	mid-range,	and	three).		Each	player’s	aggregated	PLC	value	is	shown	in	parentheses	beside	
their	name.	

Notice	 that	 pairs	 of	 teammates	 tend	 to	 show	 up	 on	 opposite	 sides	 of	 the	 table,	 such	 as	
Horford/Thomas,	Cousins/Afflalo,	and	Paul/Griffin.		Other	pairs	that	didn't	quite	make	the	top	five	
for	 both	 players	 are	 Porter/Wall	 and	 Harris/Mudiay.	 	 This	 is	 in	 part	 because	 of	 the	 feature	we	
described	previously—under-shooting	and	over-shooting	are	by	construction	balanced	within	each	
lineup—but	our	method	suggests	 that	some	of	 these	pairs	could've	been	more	efficient	had	 their	
collective	pool	of	shots	been	allocated	differently.			

Steven Adams Victor Oladipo Andre Roberson Domantis Sabonis Russell Westbrook

−0.05 (Over−Use)
−0.025
0
0.025
0.05 (Under−Use)

PLC per Shot

Rank
Under-usage Over-usage

Rim Mid-range Three Rim Mid-range Three
1 Al Horford (0.95) O. Porter (0.25) G. Harris (0.10) I. Thomas (-1.23) D. Cousins (-0.27) K. Oubre (-0.17)
2 K. Korver (0.72) K. Korver (0.22) G. Hayward (0.08) D. Cousins (-0.89) A. Harrison (-0.23) B. Rush (-0.09)
3 O. Porter (0.65) A. A✏alo (0.17) R. Anderson (0.08) B. Gri�n (-0.66) A. Wiggins (-0.18) W. Johnson (-0.08)
4 C. Paul (0.61) A. Crabbe (0.16) D. Booker (0.07) T. Allen (-0.57) I. Thomas (-0.18) C. Brewer (-0.08)
5 T. Ross (0.59) N. Bjelica (0.16) D. Lillard (0.06) J. Randle (-0.55) B. Gri�n (-0.15) M. Chriss (-0.07)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>



	

																																																															9	

2019	Research	Papers	Competition		
Presented	by:	

Another	interesting	feature	in	Table	1	is	the	appearance	of	specialist	players	like	Kyle	Korver	and	
Ryan	Anderson	on	 the	under-usage	 side	of	 the	 table.	 	These	players	benefit	 from	 incredible	 shot	
creators	(LeBron	James	and	James	Harden)	that	draw	defenders	toward	them	on	offense	and	create	
open	 shots	 for	 their	 teammates.	 	Reallocating	more	 shots	 to	 these	 specialist	 players	may	 lead	 to	
significant	decreases	in	their	FG%.				

Table	2	shows	LPL	per	100	values	for	each	team's	maximum	minute	lineup	in	the	2016-17	season,	
partitioned	 into	 the	same	regions	described	above.	 	 Interestingly,	 the	 teams	with	the	highest	LPL	
values	at	the	rim	(Sacramento),	mid-range	(Washington),	and	3-point	(Oklahoma	City)	regions	have	
been	written	about	in	the	media	regarding	related	phenomena.		In	2016-17	The	Sacramento	Kings	
had	the	highest	LPL	around	the	rim	and	Demarcus	Cousins	posted	one	of	the	all-time	highest	usage	
rates	recorded	for	a	big	man	in	the	NBA	[12].		In	the	mid-range	region,	the	Washington	Wizards	had	
the	highest	LPL	value	with	John	Wall	as	the	largest	over-use	PLC	contributor	to	that	figure.		A	season	
later,	Washington	beat	writers	reproved	John	Wall	for	taking	bad	jump	shots	early	in	the	shot	clock	
[13].		Finally,	Oklahoma	City	star	Russell	Westbrook	has	long	been	one	of	the	NBA's	top	shot	creators.		
His	drives	often	lead	to	open	corner	3's	for	his	teammates	[14],	but	unfortunately	in	2016-17	Andre	
Roberson	was	the	most	frequent	recipient,	who	has	an	extremely	low	3-point	percentage.	

5. Conclusion	
	
A	player's	decision	to	take	a	shot	is	heavily	influenced	by	which	teammates	he	is	playing	with,	yet	to	
our	knowledge	this	factor	hasn't	been	explored	in	a	spatial	context.	 	Our	research	fills	this	gap	by	
introducing	novel	methods	 to	evaluate	allocative	efficiency	spatially.	 	The	approach	we	 take	uses	
publicly	available	data	and	our	code	base	is	available	online,	allowing	our	methods	to	be	immediately	
utilized	 by	 teams	 and	 analysts.	 	 The	 examples	 we	 have	 shown	 here	 provide	 only	 a	 taste	 of	 the	
intelligence	we	can	derive	from	LPL	and	PLC,	which	in	turn	can	help	teams	identify	areas	where	they	
could	improve	shot	allocation	among	their	players.	
	
We	do	not	advocate	for	strict	adherence	to	the	optimal	shot	distribution	we	propose	in	this	paper;	as	
mentioned	previously,	LPL	and	PLC	are	influenced	by	a	number	of	contextual	variables	which	we	
cannot	account	for	with	only	publicly	available	data.		However,	this	highlights	the	flexibility	and	value	
that	could	be	gained	by	franchises	with	access	to	proprietary	data.		Our	methods	could	be	sharpened	
by	accounting	 for	defensive	pressure	and	by	omitting	play	 types	 that	don't	 follow	the	underlying	
assumptions	 for	allocative	efficiency,	such	as	 fast	breaks,	drive-and-kick	plays,	and	double	 teams.		
Additionally,	by	pairing	LPL	with	play	call	data	coaches	could	gain	specific	insight	into	how	plays	led	
to	 lost	 points.	 	 Even	without	 this	 additional	 contextual	 information,	we	 believe	 that	 LPL	 has	 the	
potential	 to	 serve	 as	 a	 valuable	 diagnostic	 tool	 to	 help	 coaches	 and	 front	 office	 staff	 identify	
inefficiencies.			
	
There	are	many	promising	directions	for	future	work.		We	do	not	account	for	usage	curves	in	our	
analysis,	which	would	be	a	powerful	addition.	 	LPL	could	also	be	adapted	to	account	for	usage	by	
considering	 it	 as	 a	 constrained	 optimization	 problem,	 in	 which	 not	 all	 of	 a	 player’s	 shots	 are	
reallocated	to	other	shooters,	but	rather	just	a	portion	of	them.		Finally,	by	using	LPL	to	inform	player-
specific	shot	policy	changes,	entire	seasons	could	be	simulated	using	the	method	in	[15]	to	better	
quantify	the	impact	of	shot	reallocation	on	point	production.		Our	methods	are	also	simple	enough	
that	 they	could	easily	be	 implemented	at	G-league,	NCAA,	and	 international	 levels.	 	We	hope	that	
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teams	and	analysts	not	only	utilize	but	build	upon	the	methods	presented	here.		We	are	confident	
that	doing	so	will	lead	to	more	intelligent	offenses	and	progress	in	the	quest	for	greater	efficiency.	
	

	
Table	2.	LPL	per	100	possession	values	for	each	team's	maximum	minute	lineup	in	the	2016-17	regular	season,	partitioned	
into	three	court	regions	(rim,	mid-range,	and	three).	

	 	

Team Max. minutes lineup Rim LPL Mid. LPL Three LPL Tot LPL

Teague, Ellis, George, Young, Turner 0.15 0.07 0.04 0.26

Hill, Hood, Hayward, Favors, Gobert 0.25 0.04 0.01 0.30

Rondo, Wade, Butler, Gibson, Lopez 0.11 0.33 0.03 0.47

Irving, Smith, James, Love, Thompson 0.22 0.18 0.14 0.53

Parker, Green, Leonard, Gasol, Aldridge 0.25 0.20 0.07 0.53

Lowry, Derozan, Carroll, Siakam, Valanciunas 0.29 0.25 0.09 0.62

Holiday, Hield, Hill, Cunningham, Davis 0.34 0.24 0.06 0.64

Dellavadova, Snell, Parker, Antetokounmpo, Henson 0.42 0.23 0.07 0.72

Rubio, Lavine, Wiggins, Dieng, Towns 0.28 0.43 0.10 0.81

Bazemore, Schroeder, Sefalosha, Millsap, Howard 0.56 0.21 0.04 0.82

Lillard, McCollum, Harkless, Aminu, Plumlee 0.37 0.31 0.22 0.89

Lin, Foye, Lavert, Hollis-Je↵erson, Lopez 0.66 0.24 0.09 0.99

Curry, Thompson, Durant, Green, Pachulia 0.89 0.11 0.07 1.08

Russell, Young, Deng, Randle, Mozgov 0.75 0.33 0.02 1.10

Curry, Ferrell, Matthews, Barnes, Nowitzki 0.92 0.14 0.07 1.13

Smith, Caldwell-Pope, Harris, Morris, Drummond 0.81 0.32 0.02 1.15

Westbrook, Oladipo, Roberson, Sabonis, Adams 0.43 0.43 0.32 1.18

Dragic, McGruder, Waiters, Babbitt, Whiteside 0.87 0.30 0.04 1.21

Conley, Allen, Parsons, Green, Gasol 0.86 0.26 0.11 1.24

Walker, Batum, Kidd-Gilchrist, Williams, Zeller 0.87 0.28 0.11 1.27

Beverly, Harden, Ariza, Anderson, Capela 0.56 0.55 0.24 1.35

McConnell, Stauskas, Covington, Ilyasova, Embiid 0.90 0.46 0.04 1.40

Thomas, Bradley, Crowder, Horford, Johnson 1.08 0.30 0.08 1.45

Mudiay, Harris, Chandler, Gallinari, Jokic 0.79 0.45 0.23 1.47

Rose, Lee, Anthony, Porzingas, Noah 1.29 0.19 0.02 1.50

Bledsoe, Booker, Warren, Chriss, Chandler 1.02 0.27 0.23 1.52

Payton, Fournier, Ross, Gordon, Vucevic 1.24 0.27 0.09 1.59

Wall, Beal, Porter, Morris, Gortat 1.37 0.70 0.11 2.17

Paul, Reddick, Mbah a Moute, Gri�n, Jordan 1.77 0.46 0.12 2.35

Lawson, A✏alo, Gay, Cousins, Koufos 1.97 0.50 0.03 2.50
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Appendix	
	

	
Figure	7.	Boston	Celtics	highest	minute	lineup	LPL	values	with	corresponding	PLC	per	shot.	

Figure	8.	Cleveland	Cavaliers	highest	minute	lineup	LPL	values	with	corresponding	PLC	per	shot.
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Figure	9.	Houston	Rockets	highest	minute	lineup	LPL	values	with	corresponding	PLC	per	shot.	

Figure	10.	Washington	Wizards	highest	minute	lineup	LPL	values	with	corresponding	PLC	per	shot.	
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