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Abstract

The Cleveland Cavaliers took 329 contested mid-range jump shots with over 10 seconds remaining on
the shot clock during the 2015-2016 regular season. What could’ve happened if they had taken these shots
20% less frequently over the season? We attempt to answer these types of questions by modeling plays from
the 2015-2016 NBA regular season as episodes from team-speciϐic Markov decision processes. Using STATS
SportVU optical tracking data, we model the transition probabilities as a tensor indexed in time in order to
simulate plays with dynamic probabilities across the shot clock. To culminate, we simulate seasons under
altered shot policies of interest within the basketball analytics community and explore the net changes in
efϐiciency and production under these alternative shot policies.

1 Introduction

A basketball game is a collection of ϐinite stochastic processes; each play is comprised of a ϐinite number of
transitions between players and locations, ultimately terminating in a shot, turnover, or foul. An integral
attribute of these processes, however, is that they are non-stationary; the transition probabilities are not con-
stant over the 24 second shot clock. Surprisingly, this non-stationarity often gets overlookedwhen evaluating
measures of efϐiciency and production.

To illustrate this phenomenon, consider the familiar breakdown of shot efϐiciency in Figure 1(a). On av-
erage across the NBA in the 2015-2016 regular season, three pointers and shots in the restricted area were
the most valuable shots, while mid-range shots were the least valuable. Juxtaposed with the corresponding
breakdown of shot volumes for these regions shown in Figure 1(b), this appears to signify major inefϐiciency
in the league’s overall shot selection.

A primary key to understanding this apparent disparity is to recall the rule imposed by the 24 second shot
clock. Figure 2 shows the league average empirical shot policies for each court region. We deϐine a shot policy
as the probability that any on-ball event (i.e. dribbles, passes, and shots) will be a shot as a function of the
shot clock. As the shot clock winds down, the probability of shooting increases — quite dramatically in the
ϐinal seconds of the shot clock. Taking this into account, the ϐigures above make more sense; naturally teams
would rather take a shot, even if it’s a poor one, than get no points at all.
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Average Points 
 Per Shot

Rim − 1.23
Corner 3 − 1.15
Arc 3 − 1.05
Paint − 0.87
Mid−range − 0.79

(a) 2015-16 NBA league average shot efϐiciency
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(b) 2015-16 NBA league-wide shot volumes

Figure 1

NBA 2015−2016 Empirical Shot Policies by Court Region
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Figure 2: 2015-2016 NBA empirical league average shot policies. We see lower probability of shots in the mid-
range and arc 3 areas because the on-ball events in these regions are dominated by passes and dribbles. Inter-
estingly, we clearly see the impact of fast breaks in the paint and rim shot policies early in the shot clock.

The existence of the shot clockmakes evaluating shot selection a far more difϐicult task. We cannot simply
conclude that teams should take fewer mid-range jumpers — we have to consider when and whom should
take fewermid-range jumpers and how these changes would effect the team’s efϐiciency and production. This
is the key point of interest in this research project. While we focus on shot policies in this paper, narrowing in
on a player’s choice to shoot or not at any given instant, the framework presented here easily extends across
the space of possible decisions players can make on-ball, including movement and passing.

Inpursuit of answers,wehavedeveloped statisticalmethods to simulate from ϐinitenon-stationary stochas-
tic processes in a basketball context. The main idea is to construct a method to imitate plays with respect to
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time for any given team. This entails simulating plays not simply by outcome, but rather at the sub-second
level, incorporating every intermediary and terminal on-ball event over the course of a play. After the process
is calibrated, we explore the consequences of altering shot probabilities over speciϐic intervals in time. To this
end, we model plays from the 2015-2016 NBA regular season as episodes realized from team-speciϐic non-
stationary Markov decision processes. Since time lapses between events are incompatible with parametric
forms, we rely on simulation to ultimately quantify the effects of changes to a team’s shot policy.

The rest of the paper is outlined as follows. In Section 2, we give a brief overview of Markov decision
processes (MDP), provide a summary of related work, and describe our data and model. In Section 3, we
describe our MDP-based play simulator and show the results of our simulations under two altered policies in
comparison to the corresponding observed policies for all teams in the league. We provide a brief conclusion
in Section 4.

2 Methods

2.1 Markov Decision Processes

A ϐinite Markov decision process is a framework utilized in many modern reinforcement learning problems
which characterizes the interactions between an agent and its environment. The “Markov” qualiϐier assumes
that the agent takes actions based solely on the current state of the environment (which can include a ϐixed
lag). We will represent a MDP as a tuple ⟨S,A, T (·), R(·), π(·)⟩. S represents a discrete and ϐinite set of states.
A represents the set of actions the agent can take. T (·) deϐines the transition probabilities between states at
any given step in the process. R(·), the reward function, deϐines the reward the agent receives for any given
state/action pair. Finally, the policy, π(·), governs the probability that the agent takes any given action based
on the current state of the environment. π(·) is the only aspect of the systemwhich the agent controls. The goal
of the agent is to maximize his rewards, which he does by altering his policy. We can deϐine these functions
succinctly in mathematical terms:

T (s, a, s′) = P[St+1 = s′ | St = s,At = a] (1)
R(s, a) = E[Rt+1 | St = s,At = a] (2)
π(s, a) = P[At = a | St = s] (3)

In basketball terms, π(s, a) simply represents the probability that the ball-carrier takes a shot given his
current state. If he takes a shot,R(s, a)dictates the expected point value of that shot. If he decides not to shoot,
T (s, a, s′) denotes the probabilities of the ball entering any other state given his current state. For example, if
LeBron James has the ball at the top of the arc and he decides not to shoot, T (s, a, s′) governs the probability
of the next state of the ball — perhaps a dribble in the same location, or a pass to a teammate in a different
court region. To illustrate the Markov decision process in context of a basketball play, consider the graph in
Figure 3.

In most settings the functions T (·), R(·), and π(·) are assumed to be stationary, however in this paper
we assume that only the reward function R(·) is time-independent. We refer the reader to [10] for a more
expansive introduction to reinforcement learning and Markov decision processes.
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Figure 3: A toy graph to illustrate the components of the MDP for a single player in context of a basketball play.
The blue circles represent states, the red circles represent actions (shots), the web of curved lines represent
transition probabilities between states, and the red squares show the set of possible rewards given a shot. The
red lines of varying width connecting the blue state circles to the red action circles represent the policy. Players
may pass the ball to another player (not shown) which is also considered a transition to another non-terminal
state.

2.2 RelatedWork

Markovmodels have been utilized in varying contexts in several sporting domains. Through the use of a semi-
Markov process, Thomas [11] describes times between goals scored in hockey, and uses this to demonstrate
that scoring a goal has an effect of shortening the remainder of an NHL game. Routley and Schulte [9] apply a
Markov game formalism to value player actions in hockey, incorporating context and a lookahead window in
time. In [6] Goldner uses a Markov model to provide a framework for evaluating plays in American football.
In their degree project [3], Damour and Lang model set pieces in soccer using a Markov model to estimate
transition probabilities. Peña uses Markov processes to model possessions and their outcomes in the English
Premier League in [8].

The landmark work of Cervone et al. in [2, 1] is perhaps most relevant to the methods we explore in
this paper. The state space of our model is similar to the coarsened model they use, but the main similarity
with their work is the use of a non-stationary Markov model. In contrast to most Markov models in sports,
they account for the non-stationarity inherent in a basketball possession by expanding their state-space to
include time. Additionally, the hazardmodel theyuse explicitly deϐines transitionprobabilities as a continuous
function of space and time.

The work of Franks et al. in [4, 5] was also inϐluential in this project, particularly regarding our shot efϐi-
ciencymodel. Finally, our methods rely on simulating episodes fromMarkov processes to generate results. In
[7]Min-hwanet al. simulate realizations fromstationaryMarkovmodels under differing line-up combinations
to estimate game outcomes.

4 2018 Research Papers Competition
Presented by:



2.3 Description of Data

We use high-resolution spatio-temporal tracking data collected by Stats LLC for the 2015-2016 NBA regular
season. These data include the x, y coordinates of all 10 players on the court and the x, y, z coordinates of
the ball at 25 observations per second. These data are merged with play-by-play data yielding additional
features including play-action events such as shots, passes, dribbles, fouls, etc. Figure 4 shows a two second
snapshot of the data during a game inMarch 2016. For our project we only use observations with tagged ball-
events. This includes dribbles, passes, rebounds, turnovers, and shots. This signiϐicantly reduces the number
of observations while retaining the core structure of a play.

Cleveland Cavaliers vs. LA Lakers
March 10, 2016

1st Quarter 11:41.4 − 11:39.4

● ●

Tristan Thompson

Kyrie Irving J.R. Smith

LeBron James

Channing Frye

D'Angelo Russell

Julius Randle

Jordan Clarkson

Roy Hibbert

Kobe Bryant

Basketball

Figure 4: Two seconds of data in the ϐirst quarter of Cavaliers vs. Lakers on March 10, 2016. Cleveland’s Kyrie
Irving begins with possession of the ball, then passes to JR Smith who is in position to drive to the basket or take
a 3-point shot. Laker Jordan Clarkson scrambles to defend him, while Roy Hibbert is moving to defend the rim.

2.4 State and Action Space

The state space of our model, S, is deϐined in context of the ball-carrier. At any time t, the state is given by
the identity of the ball-carrier, his court region, and an indicator variable of defensive pressure. Court region
is a function of the x, y coordinates of the ball-carrier and can take any of the six regions shown in Figure 1.
Defensive pressure is determined by the distance of the nearest defender to the ball-carrier and is dependent
on the court region of the ball-carrier.

Since we are primarily interested in shot policies, we’ve chosen a binary action space; at each step in the
process, the ball-carrier decides to either shoot or not shoot (A = {shoot, not shoot}) based on their policy
π(·). If a shot is taken, the play terminates, otherwise the subsequent transition is assumed to come from T (·).
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2.5 Transition Probability and Shot Policy Tensors

In order to incorporate non-stationarity in T (s, a, s′) and π(s, a), we propose using a tensor to model the
transition probabilities and shot policies. This allows us to consider each transition probability as a non-linear
function of time, with the constraint that at any discrete step in time, the slice of the tensor representing time
t is a valid transition probabilitymatrix (TPM). Speciϐically, wemodel both tensors as a collection of 12matrix
slices, each slice representing a two second interval of the shot clock as illustrated in Figure 5.

Transition Probability Tensor

Shot Clock = 1 A B C

A 0.0 0.0 1.0

B 0.0 0.0 1.0

C 0.0 0.0 1.0
Shot Clock = 12 A B C

A 0.1 0.1 0.8

B 0.3 0.4 0.3

C 0.0 0.5 0.5
Shot Clock = 24 A B C

A 0.2 0.2 0.6

B 0.4 0.5 0.1

C 0.1 0.6 0.3

Figure 5: The shot policy tensor and transition probability tensor are collections of 12 transition probability
matrices each representing a two second interval of the shot clock. The states and corresponding probabilities
shown here are purely illustrative.

This tensor framework is the key to accurately exploring the effects of altering inefϐicient shot policies. As
mentioned in the introduction and illustrated in Figure 2, the efϐiciency of a shot is dependent on the time
remaining on the shot clock. The tensor we use allows us to correctly account for the dynamic nature of tran-
sition probabilities and tailor our policy alterations accordingly. The shot policy tensor is virtually identical
to the transition probability tensor in form. The only difference is the column space; since the agent (player)
makes only a binary decision at every step of the process, given any time t, the shot policy is a matrix slice
with row space equal to the row space of the corresponding transition probability matrix slice and a column
space of length two (shot & no shot). We estimate a team’s shot policy tensor using the same methods for
estimating the transition probability tensor and consider them jointly moving forward.

We estimate a team’s transition probability tensor from their observed transition counts indexed at two
second intervals of the shot clock. At time t, each row of transition counts y(i,·,k) is modeled using a multino-
mial likelihood:

f(y(i,·,k)|p) =
J∏

j=1

(pijk)
yijk . (4)

Here, i indexes the starting state, j indexes the new state, and k indexes time. We estimate the tensor probabil-
ities empirically using the team transition count tensor modulated by the league transition probability tensor
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(also estimated using league wide empirical counts):

p̂ijk =
yijk + p̂League Avglmk∑K

k=1(yijk + p̂League Avglmk )
(5)

The purpose of the modulation term p̂League Avglmk in (5) is two-fold. First, it ensures that p̂ijk > 0 for all cells in a
team’s transition probability tensor, which in turn makes (4) a valid probability distribution for any potential
state of the MDP.We deϐine our league state-space at a lower level, using court region/position combinations,
indexed by l andm above (using the classical position assignments of center, power forward, small forward,
shooting guard, and point guard).

This leads to the second purpose of the modulation term; modulating transition counts yijk by p̂League Avglmk

yields more plausible probabilities for low-minute players. For most players, the transition counts between
any two states overwhelm themodulation piece p̂League Avglmk which is by deϐinition less than 1. However for low-
minute players who may have few (or no) observed transition counts from state i to state j, the modulation
piece pulls their estimated transition probability toward the league average for their position.

2.6 Reward Function

Recall that the reward function is an expected value:

R(s, a) = E[Rt+1 | St = s,At = a]. (6)

In context of a basketball play, (6) can be restated as, “How many immediate points do we expect when a
player in state s takes action a?” If the action is a shot, then this expected value is his expected points per shot
from the given state. If the action is not a shot, this expected value is almost (but not exactly) 0. However, in
our analysis we have omitted all plays that incorporated foul shots and offensive rebounds for pedagogical
simplicity. By doing so, when a ̸= shot this expected value is exactly 0, which in turn allows us to deϐine the
reward function of the MDP completely in terms of a shot efϐiciency model.

Shot Efϐiciency Model

Given a shot, we model the probability of a make as a function of the player’s latent skill from the location
of the shot and whether or not the shot was contested. We estimate these latent skill parameters using a
Bayesian logistic regressionmodelwith ahierarchy that borrows strength acrossplayerswith similar shooting
characteristics. For shot n,

p(Yn = 1|Sn, cn,θ, ξ) =
exp(θkb + I(cn)ξb)

1 + exp(θkb + I(cn)ξb)
(7)

θkb ∼ N(βgb, σ
2), βgb ∼ N(0, τ2), ξb ∼ N(0, ν2).

Yn indicates whether the shot was made, Sn denotes the state at the time of the shot (player k in location b),
and cn indicates whether the shot is contested. θkb represents the latent shooting skill of player k in location b
and ξb is a global effect for defensive pressure in court region b. The skill parameters have a hierarchical prior
— each player is member of a group g, which groups were created using the k-means clustering algorithm
with 8 groups. Shot efϐiciency is then determined by scaling the estimated make-probabilities for each state
by the corresponding point value of the shot (2 or 3 points, depending on court-region). Figure 6 shows an
example of the posterior uncontested shot efϐiciency for Lebron James.
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Figure 6: Lebron James’ posterior uncontested shot efϐiciency for all court regions. As illustrated here (and for
nearly all players) the shot efϐiciency posterior variance for 3-point shots is considerably greater than it is for
2-point shots.

3 Simulating Plays

3.1 Building the Simulator

We now come to the crux of the paper — simulating team speciϐic plays under alternate shot policies. The
simulation algorithm takes as inputs the components mentioned above: the transition probability tensor, the
shot policy, and posterior draws from the shot efϐiciency model. Additionally, our simulator requires initial
states and starting shot clock times for all the playswewant to simulate. For these inputswe use the observed
starting states and corresponding times on the shot clock for each team’s collection of plays in the 2015-2016
regular season. Lastly, we need amechanism to take time off the shot clock at each step in theMarkov process.
This component of the simulator makes an analytic solution to this problem intractable; the distribution of
time lapses between events does not lend itself to a parametric distribution. For this reason, we sample the
empirical distribution of time-lapses between events (with replacement) as amechanism to simulate the time
between events in our play simulator.

To check the calibration of the simulator, we simulated 50 seasons across the entire league and checked
correlation between the simulated transition counts and observed transition counts. The simulations match
on multiple metrics; for example two point shots (ρ = 0.997), three point shots (ρ = 0.999), and turnovers
(ρ = 0.998).

We now have all the tools to answer the questions posed in our introduction. Before providing results,
however, wewant to stress the potential of the frameworkwe have built at this point. The possibilities we can
explore are limitless. For example, we could explore the effects across a season of LeBron taking uncontested
arc-threes more frequently. We could test the effects of certain players on a team shooting mid-range jump
shots less frequently early in the shot clock while increasing the shot probability for other players at the rim
or beyond the arc. With only minor changes to our framework, we could include the decision to pass in our
action space and explore changes to both shot and pass policies.
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3.2 Attenuating mid-range shots: a conservative approach

For now, we restrict our attention to mid-range jump shots taken early in the shot-clock, which are generally
regarded as less efϐicient shots relative to other court regions. Speciϐically, we modify a team’s original shot
policy to reduce contested mid-range jump shots by 20% while there are more than 10 seconds remaining
on the shot clock. We chose a conservative reduction factor for two reasons. Firstly, we want to give ample
respect to players’ decisions; players make decisions on the court with far more contextual information than
wehave in the data. Despite the fact that these shots are the least efϐicient on average, assuming that theywere
all poor decisions without looking at the video is presumptuous. Secondly, there are potential game-theoretic
consequences at play here that are difϐicult to anticipate. A major change to a team’s offensive strategy would
naturally lead to different patterns in how the defense responds, which could in turn render the transition
probabilities of our altered transition probability tensor inaccurate. Because of this, we believe that testing
minor perturbations to a team’s policy will yield more credible results.

After reducing the contested mid-range shot probability in a row of the transition probability tensor,
the multinomial model becomes invalid because the row no longer sums to 1. To account for this, we re-
normalized the perturbed row to make it valid probability distribution again. We will speak more to how the
probabilities get redistributed subsequently.

We simulated 500 seasons for each team under their original policy and the altered policy deϐined above.
Figure 7 shows the distribution of transition counts to terminal states aggregated over different indices of
interest for both the original and altered policies for the Cleveland Cavaliers.

Contested Mid−range 2 Point Shots 3 Point Shots Turnovers

450 500 550 600 3000 3050 3100 3150 3200 1600 1650 1700 1750 1800 650 700 750 800

0.000

0.005

0.010

0.015

Number of Shots

D
en
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ty

Original Policy Altered Policy

Figure 7: Distribution of simulated transition counts to four terminal states (contested mid-range jump shots,
total 2-point shots, total 3-point shots, and total turnovers) under Cleveland’s orginal and altered policies. The
altered policy reduces contestedmid-range jump shots by 20%while there aremore than 10 seconds remaining
on the shot clock.

The most obvious distinction in the four plots in Figure 7 is the distance between the two contested mid-
range distributions, which is not surprising since this is the transition probability that we directly tampered
with in the altered policy. More interesting are the consequences illustrated in the third and fourth plots.
Taking contested mid-range shots less frequently not only leads to an increase in three point attempts, but
also an increase in turnovers and shot clock violations. This is because reducing the probability of shooting
leads to longer possessions, which in turn create more opportunities for turnovers.

The most important factor to quantify is how the altered policy affects efϐiciency and production. To mea-
sure these effects we restrict our attention to the expected differences in points per shot and points per 100
plays. For each team’s 500 simulated seasons under their observed and altered policies we calculated the
mean points per shot and mean points per 100 plays and formed conϐidence intervals for these means using
bootstrap samples from the simulations. We then subtracted the sample means of each team’s original pol-
icy simulations from the alternate policy simulations to clearly illustrate the differences between the policies.
The results are shown in Figure 8.
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Figure 8: Differences in expected points per shot and expected points per 100 plays for all teams from the 2015-
2016NBA season between the original policy (red) and the conservativemid-range alternate policy (blue). Each
point estimate has a corresponding 95% conϐidence interval estimated using bootstrap samples of the simulated
season metrics. The altered policy reduces contested mid-range jump shots by 20% while there are more than
10 seconds remaining on the shot clock.

Not surprisingly, there are signiϐicant gains in expected points per shot for almost every team. By reducing
the frequency of the (on average) least efϐicient shot, team’s expected points per shot should increase. As
expected, the Rockets, who are infamous for leading the trend in avoiding mid-range jump shots, are at the
bottom of the list in these differences. Since the Rockets take the fewest mid-range shots in the league, it
follows that this policy change would have a smaller effect on them relative to other teams. Other teams near
the bottom are teams who play at a notoriously slow pace and simply don’t take many shots early in the shot
clock regardless of court region. Because our altered policy only modiϐied shot probabilities early in the shot
clock, these teams would naturally be less affected.

On the other hand, according to our results, the Celtics and Clippers could beneϐit signiϐicantly from this
altered shot policy. The Clippers in particular are the only teamwhere the conϐidence interval for the increase
in expected points per 100 plays does not overlap with the conϐidence interval of the original policy. Despite
differences in magnitude, we want to stress that this conservative policy change appears to beneϐit all teams
in expectation.

Notice that the ordering of the teams isn’t the same in both plots. This results from the deϐining feature
of our model; non-stationarity. Essentially, each team’s pace of play is automatically built into our simulator,
which consequently effects turnover rates (particularly shot clock violations) differently across teams despite
each team receiving the same policy change.

Finally, wewant tomake careful note here that it is the right hand plot— the difference in expected points
per 100 plays — that contains the most important information on whether the altered policy is beneϐicial
or not. Even if the expected points per shot is much higher under an altered policy, if the corresponding
production is less than that of the original policy, then the increase in shot efϐiciency is not worth the loss in
points resulting from increased turnovers. However, in these cases, policy changes could be more nuanced;
teams could consider not only decreasing an inefϐicient shot policy, but additionally increasing the shot policy
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in more efϐicient states, such as threes and shots at the rim. The next section provides an example of how a
seemingly beneϐicial policy change could have adverse effects if the changes weren’t so carefully designed.

3.3 Eliminating mid-range shots: the dark side of Moreyball

The subtitle for this section is admittedly tongue-in-cheek, but our methods do suggest that when Moreyball
(i.e. eliminating mid-range jump shots) is taken to the limit without increasing shot probabilities in more
efϐicient states, the consequences could bedetrimental. Consider the following altered (albeit extreme)policy:
all mid-range shots get taken 90% less frequently regardless of defensive pressure and time on the shot clock.
Figure 9 shows the results of this extreme policy in terms of expected shot efϐiciency and production.

0.00 0.02 0.04 0.06 0.08

0
5

10
15

20
25

30

Difference in Expected Points per Shot

Difference in points per shot between original and altered policies

Te
am

Rockets
Warriors

Hawks
Sixers
Grizzlies
Nuggets

Cavs
Pistons
Raptors

Bucks
Mavericks

Kings
Blazers
Thunder

Magic
Hornets
Pelicans

Heat
Bulls
Jazz

Lakers
Wizards

Nets
Timberwolves

Spurs
Knicks

Suns
Pacers
Celtics

Clippers

Original
Altered

−3.5 −3.0 −2.5 −2.0 −1.5 −1.0 −0.5 0.0

0
5

10
15

20
25

30

Difference in Expected Points per 100 Plays

Difference in points per 100 plays between original and altered policies

Te
am

Knicks
Spurs
Timberwolves

Heat
Magic
Raptors

Bucks
Bulls

Wizards
Pacers
Grizzlies

Blazers
Thunder

Jazz
Celtics

Pelicans
Hornets

Mavericks
Hawks

Kings
Nuggets
Pistons

Lakers
Rockets

Cavs
Warriors

Nets
Sixers

Suns
ClippersOriginal

Altered

Figure 9: Differences in expected points per shot and expected points per 100 plays for all teams from the 2015-
2016NBAseasonbetween theoriginal policy (red) and extrememid-rangepolicy (blue). Eachpoint estimate has
a corresponding 95% conϐidence interval estimated using bootstrap samples of the simulated season metrics.
The altered policy in this case reduces all mid-range jump shots by 90% irrespective of defensive pressure and
time remaining on the shot clock.

Shot efϐiciency sky rockets across the board (ironically, yet not surprisingly, the least so for the Rockets),
but this time there is an expected overall decrease in production for every team! Under this more extreme
policy, the increase in turnovers due to waiting for more efϐicient shots while passing up mid-range jump
shots outweigh the beneϐits of the better shot selection. It’s interesting to note which teams are affected the
most by this policy change— the offensive production of theKnicks, Spurs, andTimberwolves take the biggest
hit, indicating that they rely heavily on the mid-range shot in their offenses. Teams such as the Clippers and
Suns would be less negatively affected by this policy change, suggesting that only slightly less drastic changes
in their mid-range shot policies could yield more productive offenses.

Again, we are quick to note that these results are by nomeans deterministic— realistically a policy change
of this magnitude would involve signiϐicant strategic changes among all players and court regions. In fact,
Houston provides an excellent example; their franchise has had success in their offense not simply because
they avoidmid-range shots, but because they’ve speciϐically designed offensive schemes to increase shot prob-
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abilities inmore efϐicient states. Our results indicate that coaches cannot simply tell their players to drastically
reduce their mid-range shot frequency and expect the team’s offense to improve. On the contrary, offensive
tactical changes should be crafted with precision and awareness of the downstream consequences in time.

4 Conclusion

Wehave successfully developed and implemented amethod to test the impact of team shot policy adjustments
over the courseof a seasonat anunprecedented level of detail. With the exampleof the conservativemid-range
jump shot altered policy, we show that even a minor policy change could result in signiϐicant improvement
in both offensive efϐiciency and production for every team in the league. In the more extreme example, our
results illustrate how policy changes that may seem advantageous on the surface could have unanticipated
detrimental consequences.

These examples are only the tip of the iceberg in terms of how these methods could be utilized. Using our
methods, teams could assess proposed strategy changes outside of games rather than risking poor results by
testing them in games. Without the ability to run controlled experiments coaches have little information to
use in estimating the effect of new offensive strategies. Our methods could help bridge the gap in anticipating
and predicting the impact of proposed changes.

Another useful application of these methods would be to forecast how injuries (or potential injuries) to
players could impact a team’s season. Injuries represent perhaps the biggest factor of uncertainty that front
ofϐices face when building a roster. Our methods could help them better quantify this uncertainty by allowing
them to estimate the potential effects of having to play second and third string players if any starters suffered
a long term injury.

Finally, we have considered only shooting decisions in this introductory work, but our methodology could
naturally scale to include all different types of basketball decisions, allowing coaches and analysts to explore
incredibly nuanced tactical changes. Additionally, with tracking data now available for most major sports
including hockey, football, and soccer, our methods could extend to testing decision policies in other sporting
environments. In future work, we hope to further illustrate the vast potential our methods could unlock.
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