Modeling Offensive Player Movement in Professional Basketball

Steven Wu*
Department of Statistics and Actuarial Science, Simon Fraser University and
Luke Bornn ${ }^{\dagger}$
Department of Statistics and Actuarial Science, Simon Fraser University
Sacramento Kings

October 11, 2017

Abstract

The 2013 arrival of SportVU player tracking data in all NBA arenas introduced an overwhelming amount of on-court information - information which the league is still learning how to maximize for insights into player performance and basketball strategy. The data contains the spatial coordinates for the ball and every player on the court for 25 frames per second, which opens up avenues of player and team performance analysis that was not possible before this technology existed. This article serves as a step-by-step guide for how to leverage a data feed from SportVU for one NBA game into visualizable components that can model any player's movement on offense. We detail some utility functions that are helpful for manipulating SportVU data before applying it to the task of visualizing player offensive movement. We conclude with visualizations of the resulting output for one NBA game, as well as what the results look like aggregated across an entire season for three NBA stars with very different offensive tendencies.

Keywords: sports statistics; data science; data visualization

[^0]
ACCEPTED MANUSCRIPT

1 Introduction

The introduction of STATS SportVU, a six-camera system installed in every NBA arena, introduced a new era of sophisticated analytics [Franks et al., 2015a, D‘Amour et al., 2015, Franks et al., 2015b]. Previous to this technology, the most granular type of data was play-by-play: a text log of the major events (shot attempts, rebounds, etc.) that occur throughout the game. In contrast, SportVU's spatio-temporal data is 25 frames per second of data on the (x, y) coordinates of each of the ten players on the court, plus (x, y, z) coordinates of the ball, which can quickly become both conceptually and computationally overwhelming to work with.

Knowing precisely where each player is throughout a game spurs interesting questions about movement. Can we understand how players move with and without the ball? Are we able to simulate player movement? Such questions also have downstream implications; for example, recent models for estimating instantaneous possession value rely on an underlying player movement model [Cervone et al., 2016].

Imagine a simulator that approximates movement for each individual player, conditioned on all of the factors involving the player - front-office decision makers could understand how different lineup permutations could potentially co-exist on the court at a finer level before committing to irreversible decisions. This article presents a comprehensive walkthrough of how we turn this raw data into results that can be used for a firstapproximation simulator for NBA player movement on offense, and how this can help gain new insights on player offensive movement tendencies. We focus on offensive movement, as defensive movement is largely a function of the offensive player the defender is guarding.

2 Availability of the Data

The data used in this article is the SportVU data for one sample game, available at https: //github.com/dcervone/EPVDemo/blob/master/data/2013_11_01_MIA_BKN.csv. There is another GitHub repository, https://github.com/neilmj, where efforts are made to upload raw SportVU data on a regular basis [Johnson, 2015]. Examples for programmatically accessing the http://stats.nba.com API directly [Reda, 2015] [Forsyth, 2015] are also

ACCEPTED MANUSCRIPT

available.

3 Looking at the Data

To start, we work with the spatio-temporal data coming from a game on November 1st, 2013 featuring the Miami Heat visiting the Brooklyn Nets. For the uninitiated, the basketball court in an NBA arena is 94 feet by 50 feet. $(0,0)$ is the corner of the court and $(47,25)$ is the coordinate for center court. Each row in the dataset includes the spatial coordinates (in feet) for all entities on the court (players and ball) for one moment in time, along with contextual variables.

Table 1 offers a peek at a sample of the dataset. Table 2 details the important columns in the sample game.

Table 1: Sample of a subset of the dataset's columns listed in Table 2

| | time | quarter | game_clock | x | y | z | a1_ent | a1_x | a1_y | a1_event | possID |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 214 | 8519 | 1 | 716.4 | 15.2 | 28.4 | 6.9 | 296572 | 11.3 | 26.9 | | 1 |
| 215 | 8559 | 1 | 716.4 | 14.5 | 28.2 | 6.8 | 296572 | 11.6 | 26.9 | 23 | 1 |
| 216 | 8599 | 1 | 716.4 | 14.0 | 28.0 | 6.6 | 296572 | 11.9 | 26.9 | | 1 |

4 Utility Functions

Before getting started with the movement modeling, we define some utility functions (functions which provide general functionality that are useful and reusable for other applications with the same data).

4.1 Labelling Who Has Possession

To begin querying for offensive moments, we create a function add_possession_data_for_quarter() that augments the data with two additional columns: one indicating which team has possession, and one indicating which entity has possession (-1 indicates neither team having possession, such as during the time between the game beginning at the tip-off until the

ACCEPTED MANUSCRIPT

Table 2: Description of data columns

Column	Data	Description
Name	Type	
	(Range)	
time	integer	how many milliseconds have passed since the start of the game
game	integer	a unique identifier for the game that this dataset refers to
quarter	integer	the quarter of the game (games have at least 4, with possible overtimes)
shot_clock	numeric	number of seconds left in the offensive possession before a turnover occurs
game_clock	numeric	number of seconds left in the quarter
x	numeric	x coordinate on the court axis for the ball, in feet
y	numeric	y coordinate on the court axis for the ball, in feet
z	numeric	z coordinate (perpendicular to court surface) for the ball, in feet
(a\|h) i_ent	integer	entity id for the $i^{\text {th }}$ player on the court for the (a)way or (h)ome team
(a\|h) $i_{\text {- }}$ x	numeric	x for the $i^{\text {th }}$ player on the court for the (a)way or (h)ome team
(a\|h) $i_{-} \mathrm{y}$	numeric	y for the $i^{\text {th }}$ player on the court for the (a)way or (h)ome team
(a\|h) i_event	integer	event id for the $i^{\text {th }}$ player on the court for the (a)way or (h)ome team
possID	integer	running count of the number of changes in team possession

moment when a player controls the ball). The ($\mathbf{a} \mid \mathbf{h} \mathbf{)} \boldsymbol{i}_{-}$event columns described in Table 2 contain information on exactly which moment the possession changes between players (the event id for possession is 23). Defensive and offensive rebound moments, which have their own event id, do not explicitly follow with the possession event id, so we check for those events too for tracking changes in possession.
add_possession_data() calls this function for each quarter and stitches together the result before adding column names to the two new columns of data. Table 3 shows an example of the same rows shown in Table 1, but with the new possession data added.

ACCEPTED MANUSCRIPT

Table 3: Output of add_possession_data(): Same rows as Table 1. Two new columns team_w_poss and ent_w_poss for easy querying of when a particular player or team possesses the ball

	a1_ent	a1_x	a1_y	a1_event	possID	team_w_poss	ent_w_poss
214	296572	11.35	26.88		1	a	214152
215	296572	11.62	26.88	23	1	a	296572
216	296572	11.90	26.87		1	a	296572

4.2 Filtering Out Noisy Offensive Moments

Now that we have appended data that explicitly tells us what team and what entity has possession at every moment, we could gather all offensive moments by filtering for all rows where the player's team possessed the ball using the newly created team_w_poss column. However, it would include two cases of moments which we want to filter out:

1. from when the ball is carried from the team's own side of the court until when the ball passes over the midcourt (where players move mostly in a linear fashion to the offensive half of the court)
2. from when a shot attempt has gone up until when the ball either lands in the hoop, in a player's hand, or out of bounds (where players either move mostly in a linear fashion toward the hoop to crash the boards or toward their own hoop to play transition defense)

Movement that occurs in these two cases doesn't reflect the on-ball and off-ball player movement in an offensive possession that we want to capture and model. What is most interesting about players' motion on offense is how they behave from when the possession starts in the half-court up until the possession ends by either a shot attempt or turnover. The details of how we remove these irrelevant moments from consideration follows below in subsections 4.2.1 and 4.2.2.

ACCEPTED MANUSCRIPT

4.2.1 Offensive Moments Before Half Court

Let's review how an NBA game is structured: teams start out shooting on opposing ends for the first half, and then switch sides after half-time. To filter for only offensive moments where all offensive players have crossed the mid-court, we need a function to determine which direction each team is attacking for each half. One way to do this is to find all moments where a shot occurred for each team, find the average x coordinate value, and check which team has their average on the left hand side of the court and which team has their average on the right hand side. This is what we do in get_directions_of_play(), whose output is shown in Table 4.

Table 4: Output of get_directions_of_play(): one row per team and one column per half

	1st	2nd
a	right	left
h	left	right

4.2.2 Offensive Moments After Shot Attempts

Immediately after a shot is attempted, a player's tendency is to usually crash the paint for an offensive rebound attempt or to run backwards to set up for defense. Using the event_id column, we can identify all row indices where a field goal make/miss is recorded, and all row indices where a ball is possessed or rebounded. For every field goal make/miss, we find the closest event that concludes the shot attempt, and ignore the moments in between.

By encoding this logic into get_offensive_moments() and applying the function for this game, the number of total moments to process is reduced from 89868 to 24218 . Even though approximately half of the game is split between playing offense and defense from a team's perspective, the percentage of rows kept is low because we are only keeping moments where the game clock is running.

ACCEPTED MANUSCRIPT

4.3 Filtering Out Offensive Possessions By Player

We need a function that will further filter a team's offensive moments by removing any moments that don't have a player of interest on the court. We do this in get_player_offensive_moments() by checking the relevant team columns (either away or home) for whether the player entity identifier is in any of the five entities on the court. Our implementation also removes all columns that aren't needed for the follow up analysis, but this part isn't strictly necessary.

LeBron James, undisputedly one of the top players in the NBA, is a player in this game with entity identifier 214152, playing for the away team Miami Heat. Table 5 shows the output of applying the player filter function. The number of moments reduced only from 24218 to 21257 as LeBron James was on the court for the majority of play, playing 42:14 out of 48:00 possible minutes for that game.

Table 5: Output of get_player_offensive_moments(): the number of columns is filtered down and we only store the player's (x, y) coordinates for each row

	time	quarter	game_clock	x	y	team_w_poss	ent_w_poss
138	11640	1	713.32	73.78	17.32	a	296572
139	11680	1	713.28	74.40	17.24	a	296572
140	11720	1	713.24	75.00	17.15	a	296572
141	11760	1	713.20	75.59	17.06	a	296572
142	11800	1	713.16	76.17	16.98	a	296572
143	11840	1	713.12	76.74	16.91	a	296572

4.4 Transposing Offensive Possessions

The last utility function we need is one that transposes all offensive moments on one side of the court to the other, which we implement in flip_coords(). Spatially, a cut from the rightside of the 3 -point arc to the baseline in the first half has different (x, y) coordinates than the same cut in the second half. But in terms of movement on offense, they're identical. To have a consistent frame of reference, we transpose all moments on the right-hand side to the left-hand side by flipping the x and y coordinates; see Table 6 .

ACCEPTED MANUSCRIPT

Table 6: Output of flip_coords(): notice how LeBron James' first half coordinates are transposed as the Miami Heat were attacking the right hand side of the court to start the game

	time	quarter	game_clock	x	y	team_w_poss	ent_w_poss
138	11640	1	713.32	20.22	32.68	a	296572
139	11680	1	713.28	19.60	32.76	a	296572
140	11720	1	713.24	19.00	32.85	a	296572
141	11760	1	713.20	18.41	32.94	a	296572
142	11800	1	713.16	17.83	33.02	a	296572
143	11840	1	713.12	17.26	33.09	a	296572

We summarize the order of operations and flow of inputs and outputs for these utility functions in Figures 1 and 2.

Figure 1: Flowchart of operations to transform raw moments data and extract the relevant offensive moments for a team of interest

ACCEPTED MANUSCRIPT

Figure 2: Flowchart of operations to obtain the relevant offensive moments for a player

ACCEPTED MANUSCRIPT

5 Movement Simulation Functions

We use the raster [Hijmans, 2016] package to transform the court space into a grid of equally sized cells by converting it into a RasterLayer object. The package provides functions for referencing back and forth from (x, y) coordinates to cells. For our implementation, we have $V=600$ cells from $[0,47] \mathrm{x}[0,50]$ (we constrain ourselves to the left-hand half-court, since all movement in the offensive possessions are transposed to the left side of the court, and offensive possessions for each player are such that the ball and the player have crossed the half-court line for the respective direction of play).

5.1 Motivation

Simulating player movement on offense can sound like a daunting task. A simpler point of view on the same problem is that one needs to generate a new sensible spatial coordinate given the most recent spatial coordinates we observed. Cervone et al. [2016] uses the SportVU data to perform estimation of the expected number of points obtained by the end of a possession, by way of a stochastic process that models the evolution of a basketball possession. The estimation requires a model for player movement, and the authors propose one for when a "major ball movement" does not occur (such as passes, shots, and turnovers). Though they build separate models for offensive and defensive players, we restrict our discussion here to the offensive player movement model.

For each player l, the next locations are given by:

$$
\begin{align*}
x^{l}(t+1) & =x^{l}(t)+\alpha_{x}^{l}\left[x^{l}(t)-x^{l}(t-1)\right]+\eta_{x}^{l}(t) \tag{1}\\
y^{l}(t+1) & =y^{l}(t)+\alpha_{y}^{l}\left[y^{l}(t)-y^{l}(t-1)\right]+\eta_{y}^{l}(t)
\end{align*}
$$

A player's coordinate at time $t+1$ is modelled as position at time t, plus the player's velocity from position at time $t-1$ to time t (weighted by a parameter α^{l}, which we set to 1), plus an η^{l} term which represents the contribution of higher order derivatives to the player movement (such as acceleration, jerk, etc.). These dynamics are nonstationary; in other words, the nature of η^{l} alters over space. Intuitively this makes sense, as players who are almost out of bounds will accelerate away from the edges of the court to stay in bounds, and players who accelerate toward the basket will generally decelerate when approaching

ACCEPTED MANUSCRIPT

their attempt to shoot.
When trying to generate a new $\left(x_{t+1}^{l}, y_{t+1}^{l}\right)$, we trivially have $\left(x_{t}^{l}, y_{t}^{l}\right)$ and $\left(x_{t-1}^{l}, y_{t-1}^{l}\right)$; the challenge then is to generate a sensible η^{l} value. Instead of estimating the true distribution for η^{l} (which would involve estimating parameters for each player l) and sampling from that, we can opt for a data driven approach by collecting all of the η^{l} 's we observe throughout the course of the game for the player, and then sampling from this collection directly whenever we want to determine a player's new position on the court.

Taking the formulas above, setting $\alpha_{x}^{l}, \alpha_{y}^{l}=1$ and isolating for η^{l}, we have:

$$
\begin{align*}
\eta_{x}^{l}(t) & =\left[x^{l}(t+1)-x^{l}(t)\right]-\left[x^{l}(t)-x^{l}(t-1)\right] \tag{2}\\
\eta_{y}^{l}(t) & =\left[y^{l}(t+1)-y^{l}(t)\right]-\left[y^{l}(t)-y^{l}(t-1)\right]
\end{align*}
$$

From the rearranged equations we can see that player acceleration, which η^{l} captures, is simply the difference in player $l^{\prime} s$ velocity observed at the two previous time points. We refer to the collection of these calculated $\eta^{\prime} s$ as "empirical $\eta^{\prime} s$ ".

5.2 Obtaining the Empirical $\eta^{\prime} s$

Our filtered player moments aren't a completely connected sequence of movements. An NBA game has many stoppages; timeouts, out of bounds, and ends of quarters, to name a few. Consider some point in time t where $\left(x_{t-1}, y_{t-1}\right)$ is the last moment recorded of one offensive possession. Since we have filtered out non-offensive moments, the $\left(x_{t}, y_{t}\right)$ in our dataset is the first moment of a new offensive possession - very likely in a completely different spatial region. We need some way of recognizing situations like these, so that we don't consider these as natural movements from one location to another in our processing. We can do this by skipping any t where $\operatorname{dist}\left(x_{t}, y_{t}\right)>\delta$, for some δ parameter we choose, which is what we do in skip_this_iteration().

We chose δ by looking at the distribution of Euclidean distances in feet from each moment to the next for LeBron James in our sample game, shown in Figure 3. The 99th percentile was 0.7524233 feet, so we chose $\delta=1$ foot as a safe threshold for identifying when a player has performed a natural movement from one frame to the next. Recall that each moment in our dataset is $1 / 25$ th of a second; so if we see a player who has moved more

ACCEPTED MANUSCRIPT

than one foot from one moment to the next, we consider that the start of a new distinct offensive possession. For a reference on how far of a jump in distance that is, Usain Bolt's record breaking 28 mph translates to 1.64 feet per $1 / 25$ th of a second.

Histogram for distances between moments

Figure 3: Distribution of movement distance from frame to frame for LeBron James for $2013 / 11 / 01$ vs. the Brooklyn Nets

Recall that to generate our empirical $\eta^{\prime} s$, we need $\left(x_{t-1}, y_{t-1}\right),\left(x_{t}, y_{t}\right)$, and $\left(x_{t+1}, y_{t+1}\right)$ for every $t=2, \ldots, n-1$ (where $n=$ number of player's offensive moments). In the function get_empirical_etas(), we iterate through a given player's filtered moments $t=2, \ldots, n-1$ (excluding $t=1$ and $t=n$ because there is no previous and next moment for those time points, respectively), calculate the results from Equation 2, and encode the empirical η data in a matrix with three columns: cell, η_{x} and η_{y}. Sample results are shown in Table 7.

6 Visualization

One way to visualize the empirical $\eta^{\prime} s$ is by showing the average acceleration vector at each cell of the court. The idea is as follows: for each cell $v=1, \ldots, V$, if there were collected data at that cell, we take the cell's center as the beginning of the arrow and add the average

ACCEPTED MANUSCRIPT

Table 7: Output of get_empirical_etas() for LeBron James' on-ball data: there are 15425 rows for off-ball and 4777 rows for on-ball

	cell	x	y
2	253	0.21	-0.34
3	254	0.20	-0.32
4	254	0.20	-0.30
5	254	0.18	-0.27
6	254	0.16	-0.25
7	278	0.16	-0.22

$\left(\eta_{x}^{l}, \eta_{y}^{l}\right)$ to get the end of the arrow. The length of the arrow directly represents the magnitude of the average stochastic innovation observed at that cell. This is equivalent to running a linear regression twice, where each of the η_{x}, η_{y} is a response variable, and where each row of the \mathbf{X} matrix has a value of 1 in the column that corresponds to the cell where the η was observed (typically referred to as a one-hot encoded in machine learning literature). However, this will result in a jerky plot (especially with a small sample size of the one game we are demonstrating). We use Bayesian regression, where we use a precision matrix to incorporate the spatial information of the cells and its neighbours, to give us smoother averages and thus a smoother visualization. The function get_regression_inputs() transforms the empirical η data into the design matrix and response variable. bayes_regression() uses those as inputs to calculate the smoothed averages, as shown in Table 8.
format_data_to_plot() turns the regression output into a format that enables straightforward plotting. It adds the averaged magnitudes in each cell to the cell's center coordinate, outputting the (x, y) coordinates of the head and tail of each arrow to plot.

Lastly, we have a function, visualize_etas(), that takes the formatted arrow data and plots the results. The colors and size indicate the magnitude of the empirical η vector. For the code to plot the court itself, we stand on the shoulders of past giants [Gallic, 2014] and take advantage of existing open source code. The output of the plotting function for LeBron James in the game we are analyzing is visualized in Figure 5.

The workflow for calculating and plotting the empirical $\eta^{\prime} s$ is visualized in Figure 4.

ACCEPTED MANUSCRIPT

Table 8: Output of bayes_regression() for LeBron James' on-ball data: the result is a smoothed (x, y) pair for each of the $\mathrm{V}=600$ cells

	ls_x	ls_y
V1	0.003937	-0.006572
V2	0.024007	-0.033389
V3	0.120113	-0.066792
V4	0.714535	0.069823
V5	0.568190	0.078631
V6	0.053480	0.006110

Table 9: Output of format_data_to_plot(): (x1, y1) is the center coordinate and (x2, y2) is the coordinate for the arrow head, for each of the $\mathrm{V}=600$ cells

	x 1	y 1	x 2	y 2
1	1.000000	49.000000	1.001298	48.999463
2	3.000000	49.000000	3.009110	48.997654
3	5.000000	49.000000	5.048241	48.991181
4	7.000000	49.000000	7.270269	48.976741
5	9.000000	49.000000	9.201791	48.988723
6	11.000000	49.000000	11.269096	48.986372

7 Discussion

Looking at Figure 5, there are some exaggerated $\eta^{\prime} s$ due to the small sample size of one game. Using a season's worth of data for a player, 82 games, results in significantly smoother plots. The smoothed season plots are generated for the 2015-2016 NBA season for Andre Drummond, LeBron James, and Steph Curry in Figures 6, 7, and 8 respectively. We conclude with a discussion of how our results provide a visual explanation behind our intuition that these three NBA stars move using very different styles on offense.

ACCEPTED MANUSCRIPT

Figure 4: Flowchart of operations to extract the empirical $\eta^{\prime} s$ from a player's offensive moments and to produce visualizations

7.1 Off-ball Plots

In general, acceleration occurs away from the out-of-bounds lines, as players are penalized with a turnover in ball possession if they step out of bounds. There is another visible trend of general acceleration toward the hoop, with the values being higher near the half-court (since players often run from their defensive half to the offensive half to set up in their team's offensive sets).

Notice how that half-court effect is the most pronounced for a center like Andre Drummond when he is without the ball. It is increasingly common to find 7 footers in the NBA like Karl Anthony Towns and Kristaps Porzingis who can shoot from beyond the 3-point line with ease; however, Drummond's offensive contributions are almost exclusively from inside the paint. As the main hub in coach Stan Van Gundy's scheme (the same one successfully deployed in the past coaching Dwight Howard in Orlando, a center with similar strengths and limitations), Drummond's priority on offense is to occupy the paint area as quickly as possible. Drummond is also the center anchor of his defense as a shot-blocking rim protector. Thus, most of his movement in his transition from defense to offense occurs in a straight line down the middle of the court between both baskets.

LeBron is a perimeter playing forward. Though versatile in the positions that he can play and in the areas of the court that he can excel in, his primary defensive assignments will have him situated on either wing. With his extreme athleticism, surrounded by good passers (including a particularly notable outlet passer for fastbreaks in Kevin Love) and a

ACCEPTED MANUSCRIPT

2013/11/01: LeBron James on-ball

2013/11/01: LeBron James off-ball

Figure 5: Visualization of smoothed empirical acceleration vectors for LeBron James for 2013/11/01 vs. the Brooklyn Nets
teammate who can assume primary ball-handling duties in Kyrie Irving, LeBron can sprint ahead during the transition from defense to offense to attempt a high percentage fastbreak opportunity. Thus, LeBron's acceleration is largest coming from the wings.

Steph Curry in comparison has relatively small acceleration values. He is the primary ball-handler on his team and is much more likely to be leading a fastbreak opportunity with the ball in his hands than running on the wing without the ball as a finisher like LeBron. Famously known for effortlessly draining 3 -point shots several feet past the 3 -point line, Curry doesn't need to accelerate much to end up in a scoring position once he crosses the half-court line.

7.2 On-ball Plots

As a player with traditional NBA center limitations, Drummond does not consistently accelerate with the ball with an intent to score. His offensive strengths consists of attempting shots within the paint immediately after catching the ball. His other shot attempts include

ACCEPTED MANUSCRIPT

Figure 6: 2015-2016 Andre Drummond Empirical $\eta^{\prime} s$
shots taken after backing his defender down in the post (which consists of dribbling the ball with his back to the basket to inch closer towards it, generating almost no acceleration).

LeBron is a prolific driver to the basket with the ball in his hands and has perenially been one of the league's best at this skill since he entered the league. He has a unique combination of height, body strength, and dribbling ability which allows him to deflect and absorb contact from defenders on his way toward successfully scoring near the rim.

Comparing Curry's plot to LeBron's, Curry has an even wider range of angles where he successfully accelerates toward the hoop while dribbling. Curry's magic is that he is not hyper athletic like LeBron (or even a positional counterpart, like Russell Westbrook). His ubiquitous shot-making ability coupled with one of the best dribbling abilities in the NBA explain why he had a historic offensive season in his 2015-2016 Most Valuable Player campaign. However, his on-ball plot helps illuminate exactly how much more action he was able to generate toward the rim with the ball in his hands relative to even a top performing peer such as LeBron.

ACCEPTED MANUSCRIPT

Figure 7: 2015-2016 LeBron James Empirical $\eta^{\prime} s$

Figure 8: 2015-2016 Steph Curry Empirical $\eta^{\prime} s$

ACCEPTED MANUSCRIPT

7.3 Applications

From the discussion of the visualized results for Drummond, Curry, and LeBron, we see that a player's empirical $\eta^{\prime} s$ can be used as features to describe different types of playing styles on offense. Analysts of the NBA are generally interested in methods that can quantify new insights that impact player evaluation. Comprehensive player evaluation allows teams to tackle higher level questions; some examples include game preparation (preparing for players on the opposing team) and roster management (scouting for possible acquisitions to a team's roster).

Thanks to increased discourse and acceptance of the role of analytics in the NBA, offense has trended toward a focus on having a higher proportion of field goal attempts of either three-point shots or shots resulting from drives toward the rim. This has resulted in a premium being placed on finding players who excel at either skill (or ideally, both). Players who consistently show the ability to attack the basket with the ball from the perimeter create a lot more value than just an attempt at a high probability field goal make; they can cause perimeter help defenders to leave their marks which results in uncontested threepoint shots, and they can cause interior help defenders to leave their marks which can result in easier shots in the paint. These visualizations can help identify such players who can directly cause disorganization in the opposing team's defense.

There are some existing metrics which can approximately quantify this skill, but they can come up short if one wants a more complete picture of a player's ability to drive towards the opposing basket. Number of drives per game misses the spatial context of each attempt; a general manager would not want to compose a roster where all the best drivers favor going right, as that can clog up the spacing of the team's offense. Number of made layups/dunks per game doesn't help find players who execute an attacking drive correctly at every point in time and miss the final finish. If a manager can find a player who has an on-ball plot similar to Steph Curry but can't finish like him yet, that player can be acquired at a discount and the team can focus on improving that weakness during player development training. Being able to quantitatively identify players who have the potential to blossom into stars offers a large edge in the NBA, where player acquisitions are constrained by salary caps and competing interest from other teams.

ACCEPTED MANUSCRIPT

References

D. Cervone, A. D‘Amour, L. Bornn, and K. Goldsberry. A Multiresolution Stochastic Process Model for Predicting Basketball Possession Outcomes, 2016. URL http: //arxiv.org/pdf/1408.0777.pdf.
A. D‘Amour, D. Cervone, L. Bornn, and K. Goldsberry. Move or Die: How Ball Movement Creates Open Shots in the NBA, 2015. URL http://www.lukebornn. com/papers/ damour_ssac_2015.pdf.

Daniel Forsyth. Exploring nba data in python. http://www.danielforsyth.me/ exploring_nba_data_in_python/, 2015. Accessed: 2017-06-21.
A. Franks, A. Miller, L. Bornn, and K. Goldsberry. Counterpoints: Advanced Defensive Metrics for NBA Basketball, 2015a. URL http://www.lukebornn.com/papers/franks_ ssac_2015.pdf.
A. Franks, A. Miller, L. Bornn, and K. Goldsberry. Characterizing the Spatial Structure of Defensive Skill in Professional Basketball, 2015b. URL http://www.lukebornn.com/ papers/franks_aoas_2015.pdf.

Ewen Gallic. Drawing a basketball court with r. http://egallic.fr/ drawing-a-basketball-court-with-r/, 2014. Accessed: 2017-06-21.
R. J. Hijmans. Introduction to the 'raster' package. https://cran.r-project.org/web/ packages/raster/vignettes/Raster.pdf, 2016. R package version 2.5-8.

Neil M. Johnson. Basketball data github repository. https://github.com/neilmj/ BasketballData/tree/master/2016.NBA.Raw.SportVU.Game.Logs, 2015. Accessed: 2017-06-21.

Greg Reda. Web scraping 201: finding the api. http://www.gregreda.com/2015/02/15/ web-scraping-finding-the-api/, 2015. Accessed: 2017-06-21.

[^0]: ${ }^{*}$ The authors gratefully acknowledge Benjamin S. Baumer, Sean J. Taylor, and Jennifer Bryan for their gracious time in reviewing this article.
 ${ }^{\dagger}$ This research was supported in part by U.S. National Science Foundation grant 1461435, by ARO under Grant No. W911NF- 15-1-0172, and by NSERC.

