
Modeling O↵ensive Player Movement in
Professional Basketball

Steven Wu⇤

Department of Statistics and Actuarial Science, Simon Fraser University
and

Luke Bornn†

Department of Statistics and Actuarial Science, Simon Fraser University
Sacramento Kings

October 11, 2017

Abstract

The 2013 arrival of SportVU player tracking data in all NBA arenas introduced an

overwhelming amount of on-court information - information which the league is still

learning how to maximize for insights into player performance and basketball strategy.

The data contains the spatial coordinates for the ball and every player on the court

for 25 frames per second, which opens up avenues of player and team performance

analysis that was not possible before this technology existed. This article serves as a

step-by-step guide for how to leverage a data feed from SportVU for one NBA game

into visualizable components that can model any player’s movement on o↵ense. We

detail some utility functions that are helpful for manipulating SportVU data before

applying it to the task of visualizing player o↵ensive movement. We conclude with

visualizations of the resulting output for one NBA game, as well as what the results

look like aggregated across an entire season for three NBA stars with very di↵erent

o↵ensive tendencies.

Keywords: sports statistics; data science; data visualization

⇤
The authors gratefully acknowledge Benjamin S. Baumer, Sean J. Taylor, and Jennifer Bryan for their

gracious time in reviewing this article.
†
This research was supported in part by U.S. National Science Foundation grant 1461435, by ARO

under Grant No. W911NF- 15-1-0172, and by NSERC.

1

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT

https://crossmark.crossref.org/dialog/?doi=10.1080/00031305.2017.1395365&domain=pdf&date_stamp=2017-10-28


1 Introduction

The introduction of STATS SportVU, a six-camera system installed in every NBA arena,

introduced a new era of sophisticated analytics [Franks et al., 2015a, D‘Amour et al., 2015,

Franks et al., 2015b]. Previous to this technology, the most granular type of data was

play-by-play: a text log of the major events (shot attempts, rebounds, etc.) that occur

throughout the game. In contrast, SportVU’s spatio-temporal data is 25 frames per second

of data on the (x, y) coordinates of each of the ten players on the court, plus (x, y, z)

coordinates of the ball, which can quickly become both conceptually and computationally

overwhelming to work with.

Knowing precisely where each player is throughout a game spurs interesting questions

about movement. Can we understand how players move with and without the ball? Are we

able to simulate player movement? Such questions also have downstream implications; for

example, recent models for estimating instantaneous possession value rely on an underlying

player movement model [Cervone et al., 2016].

Imagine a simulator that approximates movement for each individual player, condi-

tioned on all of the factors involving the player - front-o�ce decision makers could un-

derstand how di↵erent lineup permutations could potentially co-exist on the court at a

finer level before committing to irreversible decisions. This article presents a comprehen-

sive walkthrough of how we turn this raw data into results that can be used for a first-

approximation simulator for NBA player movement on o↵ense, and how this can help gain

new insights on player o↵ensive movement tendencies. We focus on o↵ensive movement, as

defensive movement is largely a function of the o↵ensive player the defender is guarding.

2 Availability of the Data

The data used in this article is the SportVU data for one sample game, available at https:

//github.com/dcervone/EPVDemo/blob/master/data/2013_11_01_MIA_BKN.csv. There

is another GitHub repository, https://github.com/neilmj, where e↵orts are made to up-

load raw SportVU data on a regular basis [Johnson, 2015]. Examples for programmatically

accessing the http://stats.nba.com API directly [Reda, 2015] [Forsyth, 2015] are also

2

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



available.

3 Looking at the Data

To start, we work with the spatio-temporal data coming from a game on November 1st, 2013

featuring the Miami Heat visiting the Brooklyn Nets. For the uninitiated, the basketball

court in an NBA arena is 94 feet by 50 feet. (0, 0) is the corner of the court and (47, 25)

is the coordinate for center court. Each row in the dataset includes the spatial coordinates

(in feet) for all entities on the court (players and ball) for one moment in time, along with

contextual variables.

Table 1 o↵ers a peek at a sample of the dataset. Table 2 details the important columns

in the sample game.

Table 1: Sample of a subset of the dataset’s columns listed in Table 2

time quarter game clock x y z a1 ent a1 x a1 y a1 event possID

214 8519 1 716.4 15.2 28.4 6.9 296572 11.3 26.9 1

215 8559 1 716.4 14.5 28.2 6.8 296572 11.6 26.9 23 1

216 8599 1 716.4 14.0 28.0 6.6 296572 11.9 26.9 1

4 Utility Functions

Before getting started with the movement modeling, we define some utility functions (func-

tions which provide general functionality that are useful and reusable for other applications

with the same data).

4.1 Labelling Who Has Possession

To begin querying for o↵ensive moments, we create a function add possession data for quarter()

that augments the data with two additional columns: one indicating which team has pos-

session, and one indicating which entity has possession (-1 indicates neither team having

possession, such as during the time between the game beginning at the tip-o↵ until the

3

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



Table 2: Description of data columns

Column

Name

Data

Type

(Range)

Description

time integer how many milliseconds have passed since the start of the game

game integer a unique identifier for the game that this dataset refers to

quarter integer the quarter of the game (games have at least 4, with possible overtimes)

shot clock numeric number of seconds left in the o↵ensive possession before a turnover

occurs

game clock numeric number of seconds left in the quarter

x numeric x coordinate on the court axis for the ball, in feet

y numeric y coordinate on the court axis for the ball, in feet

z numeric z coordinate (perpendicular to court surface) for the ball, in feet

(a|h)i ent integer entity id for the ith player on the court for the (a)way or (h)ome team

(a|h)i x numeric x for the ith player on the court for the (a)way or (h)ome team

(a|h)i y numeric y for the ith player on the court for the (a)way or (h)ome team

(a|h)i event integer event id for the ith player on the court for the (a)way or (h)ome team

possID integer running count of the number of changes in team possession

moment when a player controls the ball). The (a|h)i event columns described in Table 2

contain information on exactly which moment the possession changes between players (the

event id for possession is 23). Defensive and o↵ensive rebound moments, which have their

own event id, do not explicitly follow with the possession event id, so we check for those

events too for tracking changes in possession.

add possession data() calls this function for each quarter and stitches together the result

before adding column names to the two new columns of data. Table 3 shows an example

of the same rows shown in Table 1, but with the new possession data added.

4

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



Table 3: Output of add possession data(): Same rows as Table 1. Two new columns

team w poss and ent w poss for easy querying of when a particular player or team possesses

the ball

a1 ent a1 x a1 y a1 event possID team w poss ent w poss

214 296572 11.35 26.88 1 a 214152

215 296572 11.62 26.88 23 1 a 296572

216 296572 11.90 26.87 1 a 296572

4.2 Filtering Out Noisy O↵ensive Moments

Now that we have appended data that explicitly tells us what team and what entity has

possession at every moment, we could gather all o↵ensive moments by filtering for all rows

where the player’s team possessed the ball using the newly created team w poss column.

However, it would include two cases of moments which we want to filter out:

1. from when the ball is carried from the team’s own side of the court until when the

ball passes over the midcourt (where players move mostly in a linear fashion to the

o↵ensive half of the court)

2. from when a shot attempt has gone up until when the ball either lands in the hoop, in a

player’s hand, or out of bounds (where players either move mostly in a linear fashion

toward the hoop to crash the boards or toward their own hoop to play transition

defense)

Movement that occurs in these two cases doesn’t reflect the on-ball and o↵-ball player

movement in an o↵ensive possession that we want to capture and model. What is most

interesting about players’ motion on o↵ense is how they behave from when the possession

starts in the half-court up until the possession ends by either a shot attempt or turnover.

The details of how we remove these irrelevant moments from consideration follows below

in subsections 4.2.1 and 4.2.2.

5

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



4.2.1 O↵ensive Moments Before Half Court

Let’s review how an NBA game is structured: teams start out shooting on opposing ends

for the first half, and then switch sides after half-time. To filter for only o↵ensive moments

where all o↵ensive players have crossed the mid-court, we need a function to determine

which direction each team is attacking for each half. One way to do this is to find all

moments where a shot occurred for each team, find the average x coordinate value, and

check which team has their average on the left hand side of the court and which team has

their average on the right hand side. This is what we do in get directions of play(), whose

output is shown in Table 4.

Table 4: Output of get directions of play(): one row per team and one column per half

1st 2nd

a right left

h left right

4.2.2 O↵ensive Moments After Shot Attempts

Immediately after a shot is attempted, a player’s tendency is to usually crash the paint for

an o↵ensive rebound attempt or to run backwards to set up for defense. Using the event id

column, we can identify all row indices where a field goal make/miss is recorded, and all

row indices where a ball is possessed or rebounded. For every field goal make/miss, we find

the closest event that concludes the shot attempt, and ignore the moments in between.

By encoding this logic into get o↵ensive moments() and applying the function for this

game, the number of total moments to process is reduced from 89868 to 24218. Even

though approximately half of the game is split between playing o↵ense and defense from a

team’s perspective, the percentage of rows kept is low because we are only keeping moments

where the game clock is running.

6

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



4.3 Filtering Out O↵ensive Possessions By Player

We need a function that will further filter a team’s o↵ensive moments by removing any mo-

ments that don’t have a player of interest on the court. We do this in get player o↵ensive moments()

by checking the relevant team columns (either away or home) for whether the player entity

identifier is in any of the five entities on the court. Our implementation also removes all

columns that aren’t needed for the follow up analysis, but this part isn’t strictly necessary.

LeBron James, undisputedly one of the top players in the NBA, is a player in this game

with entity identifier 214152, playing for the away team Miami Heat. Table 5 shows the

output of applying the player filter function. The number of moments reduced only from

24218 to 21257 as LeBron James was on the court for the majority of play, playing 42:14

out of 48:00 possible minutes for that game.

Table 5: Output of get player o↵ensive moments(): the number of columns is filtered down

and we only store the player’s (x,y) coordinates for each row

time quarter game clock x y team w poss ent w poss

138 11640 1 713.32 73.78 17.32 a 296572

139 11680 1 713.28 74.40 17.24 a 296572

140 11720 1 713.24 75.00 17.15 a 296572

141 11760 1 713.20 75.59 17.06 a 296572

142 11800 1 713.16 76.17 16.98 a 296572

143 11840 1 713.12 76.74 16.91 a 296572

4.4 Transposing O↵ensive Possessions

The last utility function we need is one that transposes all o↵ensive moments on one side of

the court to the other, which we implement in flip coords(). Spatially, a cut from the right-

side of the 3-point arc to the baseline in the first half has di↵erent (x, y) coordinates than

the same cut in the second half. But in terms of movement on o↵ense, they’re identical.

To have a consistent frame of reference, we transpose all moments on the right-hand side

to the left-hand side by flipping the x and y coordinates; see Table 6.

7

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



Table 6: Output of flip coords(): notice how LeBron James’ first half coordinates are

transposed as the Miami Heat were attacking the right hand side of the court to start the

game

time quarter game clock x y team w poss ent w poss

138 11640 1 713.32 20.22 32.68 a 296572

139 11680 1 713.28 19.60 32.76 a 296572

140 11720 1 713.24 19.00 32.85 a 296572

141 11760 1 713.20 18.41 32.94 a 296572

142 11800 1 713.16 17.83 33.02 a 296572

143 11840 1 713.12 17.26 33.09 a 296572

We summarize the order of operations and flow of inputs and outputs for these utility

functions in Figures 1 and 2.

moments moments

dir of play

team id

add possession data
get directions of play

o↵ensive moments
get o↵ensive moments

Figure 1: Flowchart of operations to transform raw moments data and extract the relevant

o↵ensive moments for a team of interest

8

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



player id

o↵ensive moments

team id

player df

dir of playget player o↵ensive moments flipped df

get flipped coords

Figure 2: Flowchart of operations to obtain the relevant o↵ensive moments for a player

9

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



5 Movement Simulation Functions

We use the raster [Hijmans, 2016] package to transform the court space into a grid of

equally sized cells by converting it into a RasterLayer object. The package provides func-

tions for referencing back and forth from (x, y) coordinates to cells. For our implementation,

we have V = 600 cells from [0,47]x[0,50] (we constrain ourselves to the left-hand half-court,

since all movement in the o↵ensive possessions are transposed to the left side of the court,

and o↵ensive possessions for each player are such that the ball and the player have crossed

the half-court line for the respective direction of play).

5.1 Motivation

Simulating player movement on o↵ense can sound like a daunting task. A simpler point of

view on the same problem is that one needs to generate a new sensible spatial coordinate

given the most recent spatial coordinates we observed. Cervone et al. [2016] uses the

SportVU data to perform estimation of the expected number of points obtained by the end

of a possession, by way of a stochastic process that models the evolution of a basketball

possession. The estimation requires a model for player movement, and the authors propose

one for when a “major ball movement” does not occur (such as passes, shots, and turnovers).

Though they build separate models for o↵ensive and defensive players, we restrict our

discussion here to the o↵ensive player movement model.

For each player l, the next locations are given by:

xl(t+ 1) = xl(t) + ↵l
x[x

l(t)� xl(t� 1)] + ⌘lx(t)

yl(t+ 1) = yl(t) + ↵l
y[y

l(t)� yl(t� 1)] + ⌘ly(t)
(1)

A player’s coordinate at time t + 1 is modelled as position at time t, plus the player’s

velocity from position at time t � 1 to time t (weighted by a parameter ↵l, which we set

to 1), plus an ⌘l term which represents the contribution of higher order derivatives to the

player movement (such as acceleration, jerk, etc.). These dynamics are nonstationary; in

other words, the nature of ⌘l alters over space. Intuitively this makes sense, as players who

are almost out of bounds will accelerate away from the edges of the court to stay in bounds,

and players who accelerate toward the basket will generally decelerate when approaching

10

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



their attempt to shoot.

When trying to generate a new (xl
t+1, y

l
t+1), we trivially have (xl

t, y
l
t) and (xl

t�1, y
l
t�1); the

challenge then is to generate a sensible ⌘l value. Instead of estimating the true distribution

for ⌘l (which would involve estimating parameters for each player l) and sampling from that,

we can opt for a data driven approach by collecting all of the ⌘l’s we observe throughout the

course of the game for the player, and then sampling from this collection directly whenever

we want to determine a player’s new position on the court.

Taking the formulas above, setting ↵l
x,↵

l
y = 1 and isolating for ⌘l, we have:

⌘lx(t) = [xl(t+ 1)� xl(t)]� [xl(t)� xl(t� 1)]

⌘ly(t) = [yl(t+ 1)� yl(t)]� [yl(t)� yl(t� 1)]
(2)

From the rearranged equations we can see that player acceleration, which ⌘l captures,

is simply the di↵erence in player l0s velocity observed at the two previous time points. We

refer to the collection of these calculated ⌘0s as “empirical ⌘0s”.

5.2 Obtaining the Empirical ⌘0s

Our filtered player moments aren’t a completely connected sequence of movements. An

NBA game has many stoppages; timeouts, out of bounds, and ends of quarters, to name

a few. Consider some point in time t where (xt�1, yt�1) is the last moment recorded of

one o↵ensive possession. Since we have filtered out non-o↵ensive moments, the (xt, yt) in

our dataset is the first moment of a new o↵ensive possession - very likely in a completely

di↵erent spatial region. We need some way of recognizing situations like these, so that we

don’t consider these as natural movements from one location to another in our processing.

We can do this by skipping any t where dist(xt, yt) > �, for some � parameter we choose,

which is what we do in skip this iteration().

We chose � by looking at the distribution of Euclidean distances in feet from each

moment to the next for LeBron James in our sample game, shown in Figure 3. The 99th

percentile was 0.7524233 feet, so we chose � = 1 foot as a safe threshold for identifying

when a player has performed a natural movement from one frame to the next. Recall that

each moment in our dataset is 1/25th of a second; so if we see a player who has moved more

11

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



than one foot from one moment to the next, we consider that the start of a new distinct

o↵ensive possession. For a reference on how far of a jump in distance that is, Usain Bolt’s

record breaking 28 mph translates to 1.64 feet per 1/25th of a second.

0

1000

2000

3000

0.0 0.5 1.0 1.5 2.0
distances

co
un

t

Histogram for distances between moments

Figure 3: Distribution of movement distance from frame to frame for LeBron James for

2013/11/01 vs. the Brooklyn Nets

Recall that to generate our empirical ⌘0s, we need (xt�1, yt�1), (xt, yt), and (xt+1, yt+1)

for every t = 2, . . . , n�1 (where n = number of player’s o↵ensive moments). In the function

get empirical etas(), we iterate through a given player’s filtered moments t = 2, . . . , n � 1

(excluding t = 1 and t = n because there is no previous and next moment for those time

points, respectively), calculate the results from Equation 2, and encode the empirical ⌘

data in a matrix with three columns: cell, ⌘x and ⌘y. Sample results are shown in Table 7.

6 Visualization

One way to visualize the empirical ⌘0s is by showing the average acceleration vector at each

cell of the court. The idea is as follows: for each cell v = 1, . . . , V , if there were collected

data at that cell, we take the cell’s center as the beginning of the arrow and add the average

12

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



Table 7: Output of get empirical etas() for LeBron James’ on-ball data: there are 15425

rows for o↵-ball and 4777 rows for on-ball

cell x y

2 253 0.21 -0.34

3 254 0.20 -0.32

4 254 0.20 -0.30

5 254 0.18 -0.27

6 254 0.16 -0.25

7 278 0.16 -0.22

(⌘lx, ⌘
l
y) to get the end of the arrow. The length of the arrow directly represents the magni-

tude of the average stochastic innovation observed at that cell. This is equivalent to running

a linear regression twice, where each of the ⌘x, ⌘y is a response variable, and where each

row of the X matrix has a value of 1 in the column that corresponds to the cell where the

⌘ was observed (typically referred to as a one-hot encoded in machine learning literature).

However, this will result in a jerky plot (especially with a small sample size of the one game

we are demonstrating). We use Bayesian regression, where we use a precision matrix to

incorporate the spatial information of the cells and its neighbours, to give us smoother av-

erages and thus a smoother visualization. The function get regression inputs() transforms

the empirical ⌘ data into the design matrix and response variable. bayes regression() uses

those as inputs to calculate the smoothed averages, as shown in Table 8.

format data to plot() turns the regression output into a format that enables straightfor-

ward plotting. It adds the averaged magnitudes in each cell to the cell’s center coordinate,

outputting the (x, y) coordinates of the head and tail of each arrow to plot.

Lastly, we have a function, visualize etas(), that takes the formatted arrow data and

plots the results. The colors and size indicate the magnitude of the empirical ⌘ vector. For

the code to plot the court itself, we stand on the shoulders of past giants [Gallic, 2014]

and take advantage of existing open source code. The output of the plotting function for

LeBron James in the game we are analyzing is visualized in Figure 5.

The workflow for calculating and plotting the empirical ⌘0s is visualized in Figure 4.

13

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



Table 8: Output of bayes regression() for LeBron James’ on-ball data: the result is a

smoothed (x,y) pair for each of the V=600 cells

ls x ls y

V1 0.003937 -0.006572

V2 0.024007 -0.033389

V3 0.120113 -0.066792

V4 0.714535 0.069823

V5 0.568190 0.078631

V6 0.053480 0.006110

Table 9: Output of format data to plot(): (x1, y1) is the center coordinate and (x2, y2) is

the coordinate for the arrow head, for each of the V=600 cells

x1 y1 x2 y2

1 1.000000 49.000000 1.001298 48.999463

2 3.000000 49.000000 3.009110 48.997654

3 5.000000 49.000000 5.048241 48.991181

4 7.000000 49.000000 7.270269 48.976741

5 9.000000 49.000000 9.201791 48.988723

6 11.000000 49.000000 11.269096 48.986372

7 Discussion

Looking at Figure 5, there are some exaggerated ⌘0s due to the small sample size of one

game. Using a season’s worth of data for a player, 82 games, results in significantly smoother

plots. The smoothed season plots are generated for the 2015-2016 NBA season for Andre

Drummond, LeBron James, and Steph Curry in Figures 6, 7, and 8 respectively. We

conclude with a discussion of how our results provide a visual explanation behind our

intuition that these three NBA stars move using very di↵erent styles on o↵ense.

14

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



flipped df df
filter for on or o↵ ball

empirical etas
get empirical etas

regression inputs

get regression inputs

regression outputs
bayes regression

arrow data

format data to plot

plot
visualize etas

Figure 4: Flowchart of operations to extract the empirical ⌘0s from a player’s o↵ensive

moments and to produce visualizations

7.1 O↵-ball Plots

In general, acceleration occurs away from the out-of-bounds lines, as players are penalized

with a turnover in ball possession if they step out of bounds. There is another visible trend

of general acceleration toward the hoop, with the values being higher near the half-court

(since players often run from their defensive half to the o↵ensive half to set up in their

team’s o↵ensive sets).

Notice how that half-court e↵ect is the most pronounced for a center like Andre Drum-

mond when he is without the ball. It is increasingly common to find 7 footers in the NBA

like Karl Anthony Towns and Kristaps Porzingis who can shoot from beyond the 3-point

line with ease; however, Drummond’s o↵ensive contributions are almost exclusively from

inside the paint. As the main hub in coach Stan Van Gundy’s scheme (the same one suc-

cessfully deployed in the past coaching Dwight Howard in Orlando, a center with similar

strengths and limitations), Drummond’s priority on o↵ense is to occupy the paint area as

quickly as possible. Drummond is also the center anchor of his defense as a shot-blocking

rim protector. Thus, most of his movement in his transition from defense to o↵ense occurs

in a straight line down the middle of the court between both baskets.

LeBron is a perimeter playing forward. Though versatile in the positions that he can

play and in the areas of the court that he can excel in, his primary defensive assignments

will have him situated on either wing. With his extreme athleticism, surrounded by good

passers (including a particularly notable outlet passer for fastbreaks in Kevin Love) and a

15

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



2013/11/01: LeBron James on−ball 2013/11/01: LeBron James off−ball

Figure 5: Visualization of smoothed empirical acceleration vectors for LeBron James for

2013/11/01 vs. the Brooklyn Nets

teammate who can assume primary ball-handling duties in Kyrie Irving, LeBron can sprint

ahead during the transition from defense to o↵ense to attempt a high percentage fastbreak

opportunity. Thus, LeBron’s acceleration is largest coming from the wings.

Steph Curry in comparison has relatively small acceleration values. He is the primary

ball-handler on his team and is much more likely to be leading a fastbreak opportunity with

the ball in his hands than running on the wing without the ball as a finisher like LeBron.

Famously known for e↵ortlessly draining 3-point shots several feet past the 3-point line,

Curry doesn’t need to accelerate much to end up in a scoring position once he crosses the

half-court line.

7.2 On-ball Plots

As a player with traditional NBA center limitations, Drummond does not consistently ac-

celerate with the ball with an intent to score. His o↵ensive strengths consists of attempting

shots within the paint immediately after catching the ball. His other shot attempts include

16

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



Figure 6: 2015-2016 Andre Drummond Empirical ⌘0s

shots taken after backing his defender down in the post (which consists of dribbling the ball

with his back to the basket to inch closer towards it, generating almost no acceleration).

LeBron is a prolific driver to the basket with the ball in his hands and has perenially

been one of the league’s best at this skill since he entered the league. He has a unique

combination of height, body strength, and dribbling ability which allows him to deflect

and absorb contact from defenders on his way toward successfully scoring near the rim.

Comparing Curry’s plot to LeBron’s, Curry has an even wider range of angles where

he successfully accelerates toward the hoop while dribbling. Curry’s magic is that he is

not hyper athletic like LeBron (or even a positional counterpart, like Russell Westbrook).

His ubiquitous shot-making ability coupled with one of the best dribbling abilities in the

NBA explain why he had a historic o↵ensive season in his 2015-2016 Most Valuable Player

campaign. However, his on-ball plot helps illuminate exactly how much more action he was

able to generate toward the rim with the ball in his hands relative to even a top performing

peer such as LeBron.

17

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



Figure 7: 2015-2016 LeBron James Empirical ⌘0s

Figure 8: 2015-2016 Steph Curry Empirical ⌘0s

18

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



7.3 Applications

From the discussion of the visualized results for Drummond, Curry, and LeBron, we see

that a player’s empirical ⌘0s can be used as features to describe di↵erent types of playing

styles on o↵ense. Analysts of the NBA are generally interested in methods that can quantify

new insights that impact player evaluation. Comprehensive player evaluation allows teams

to tackle higher level questions; some examples include game preparation (preparing for

players on the opposing team) and roster management (scouting for possible acquisitions

to a team’s roster).

Thanks to increased discourse and acceptance of the role of analytics in the NBA,

o↵ense has trended toward a focus on having a higher proportion of field goal attempts of

either three-point shots or shots resulting from drives toward the rim. This has resulted in a

premium being placed on finding players who excel at either skill (or ideally, both). Players

who consistently show the ability to attack the basket with the ball from the perimeter

create a lot more value than just an attempt at a high probability field goal make; they

can cause perimeter help defenders to leave their marks which results in uncontested three-

point shots, and they can cause interior help defenders to leave their marks which can

result in easier shots in the paint. These visualizations can help identify such players who

can directly cause disorganization in the opposing team’s defense.

There are some existing metrics which can approximately quantify this skill, but they

can come up short if one wants a more complete picture of a player’s ability to drive

towards the opposing basket. Number of drives per game misses the spatial context of

each attempt; a general manager would not want to compose a roster where all the best

drivers favor going right, as that can clog up the spacing of the team’s o↵ense. Number

of made layups/dunks per game doesn’t help find players who execute an attacking drive

correctly at every point in time and miss the final finish. If a manager can find a player

who has an on-ball plot similar to Steph Curry but can’t finish like him yet, that player

can be acquired at a discount and the team can focus on improving that weakness during

player development training. Being able to quantitatively identify players who have the

potential to blossom into stars o↵ers a large edge in the NBA, where player acquisitions

are constrained by salary caps and competing interest from other teams.

19

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT



References

D. Cervone, A. D‘Amour, L. Bornn, and K. Goldsberry. A Multiresolution Stochas-

tic Process Model for Predicting Basketball Possession Outcomes, 2016. URL http:

//arxiv.org/pdf/1408.0777.pdf.

A. D‘Amour, D. Cervone, L. Bornn, and K. Goldsberry. Move or Die: How Ball Move-

ment Creates Open Shots in the NBA, 2015. URL http://www.lukebornn.com/papers/

damour_ssac_2015.pdf.

Daniel Forsyth. Exploring nba data in python. http://www.danielforsyth.me/

exploring_nba_data_in_python/, 2015. Accessed: 2017-06-21.

A. Franks, A. Miller, L. Bornn, and K. Goldsberry. Counterpoints: Advanced Defensive

Metrics for NBA Basketball, 2015a. URL http://www.lukebornn.com/papers/franks_

ssac_2015.pdf.

A. Franks, A. Miller, L. Bornn, and K. Goldsberry. Characterizing the Spatial Structure

of Defensive Skill in Professional Basketball, 2015b. URL http://www.lukebornn.com/

papers/franks_aoas_2015.pdf.

Ewen Gallic. Drawing a basketball court with r. http://egallic.fr/

drawing-a-basketball-court-with-r/, 2014. Accessed: 2017-06-21.

R. J. Hijmans. Introduction to the ‘raster‘ package. https://cran.r-project.org/web/

packages/raster/vignettes/Raster.pdf, 2016. R package version 2.5-8.

Neil M. Johnson. Basketball data github repository. https://github.com/neilmj/

BasketballData/tree/master/2016.NBA.Raw.SportVU.Game.Logs, 2015. Accessed:

2017-06-21.

Greg Reda. Web scraping 201: finding the api. http://www.gregreda.com/2015/02/15/

web-scraping-finding-the-api/, 2015. Accessed: 2017-06-21.

20

ACCEPTED MANUSCRIPT

ACCEPTED MANUSCRIPT


