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Abstract: Predicting the outcome of a single sporting event 
is difficult; predicting all of the outcomes for an entire 
tournament is a monumental challenge. Despite the dif-
ficulties, millions of people compete each year to forecast 
the outcome of the NCAA men’s basketball tournament, 
which spans 63 games over 3 weeks. Statistical predic-
tion of game outcomes involves a multitude of possible 
covariates and information sources, large performance 
variations from game to game, and a scarcity of detailed 
historical data. In this paper, we present the results of a 
team of modelers working together to forecast the 2014 
NCAA men’s basketball tournament. We present not only 
the methods and data used, but also several novel ideas for 
post-processing statistical forecasts and decontaminating 
data sources. In particular, we highlight the difficulties in 
using publicly available data and suggest techniques for 
improving their relevance.
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1  Introduction
Predicting the NCAA Men’s Division I Basketball Cham-
pionship, also known as March Madness, has become 
big business in recent years. In 2011, an estimated $3–12 
billion was wagered on the competition (Matuszewski 
2011), and in 2014, billionaire Warren Buffet offered $1 

billion to anyone who could correctly predict all 63 games. 
Modeling wins and losses encompasses a number of sta-
tistical problems: very little detailed historical champion-
ship data on which to train models, a strong propensity 
to overfit models on post-tournament historical data, and 
a large systematic error component of predictions arising 
from highly variable team performance based on poten-
tially unobservable factors.

In this paper, we present a meta-analysis of statistical 
models developed by data scientists at Harvard University 
for the 2014 tournament. Motivated by a recent Kaggle 
competition, we developed models to provide forecasts of 
the 2014 tournament that minimize log loss between the 
predicted win probabilities and realized outcomes:
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where N is the number of games, yi,j indicates if game i is 
won by the home (j = 0) or away (j = 1) team, and pi,j refer-
ences the corresponding predicted probabilities. Correctly 
predicting a win with 55% confidence merits a lower 
score than predicting the same win with 95% confidence; 
however, incorrectly predicting a win with 95% confidence 
is penalized much more harshly than incorrectly predict-
ing a win with 55% confidence (Cesa-Bianchi and Lugosi 
2001). This contrasts with most common March Madness 
brackets, in which the winning bracket is that which suc-
cessfully predicts the most game outcomes.

During the 2014 March Madness period, our group 
collectively produced more than 30 different models 
of NCAA basketball performance metrics. The models 
incorporated a wide variety of team- and player-level 
archival data, spanning several years of regular and 
post-season games. Our most successful models for pre-
dicting the 2014 out-of-sample results were those which 
incorporated sufficient regularization, and which did 
not suffer from data “contamination”. Contaminated 
data, as we define the term here, refers to archival data 
for a given NCAA season which incorporated the results 
of the final tournament from that year. Many publicly 
available NCAA datasets contain contaminated data. 
Features extracted from these contaminated data sets 
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were more likely to overfit models to results from a par-
ticular season, and therefore led to poor out-of-sample 
performance.

In this paper, we present an in-depth look at the 
mechanisms and successes of our March Madness 
models, given the same fixed feature set. Specifically, 
our goal is to compare models and loss functions rather 
than identify the best features and predictor variables. 
For completeness, we start in Section 3 with an overview 
of the complete set of features employed before discuss-
ing the models we used to incorporate those features. 
Out of the dozens of models attempted, the majority were 
variants of logistic regression, decision trees, and neural 
networks, and as such we highlight a selection of these 
models in Section 4. This leads into a discussion of loss 
functions in Section 5. This section covers issues related 
to overfitting, as well as issues of predictive adaptability 
across a range of evaluation metrics. Lastly, we explore 
the issue of data decontamination in Section 6, in which 
we consider the use of pre- vs. post-tournament data in 
model building, and how employing contaminated fea-
tures can quickly lead to overfitting.

2  Literature review
Contributions to the current literature on NCAA tourna-
ment prediction fall into three broad categories, charac-
terized by the type of problem they address.

Problem 1: Seeds already offer good predictive power. 
Each team enters the tournament with a ranking, or seed, 
which is not only an indicator of regular season perfor-
mance, but also serves as a predictor of post-season success, 
since higher-seeded teams face lower-seeded teams in the 
early rounds of the tournament (Smith and Schwertman 
1999; Harville 2003; Jacobson and King 2009). Seeds are 
not infallible, however; while strongly predictive for early 
rounds, their forecasting power deteriorates as the differ-
ence in quality between teams in advanced rounds dimin-
ishes (Boulier and Stekler 1999). As such, some models 
attempt to predict where seeding will go wrong (Schwert-
man, McCready, and Howard 1991). This approach gener-
ates an upset probability for each game, and then using 
some threshold λ, for all games with an upset probability 
p  >  λ, the higher-seeded team is predicted to lose. While 
this method has seen some success in recent years (Bryan, 
Steinke, and Wilkins 2006), there is also evidence that it 
leads to systematic over-prediction of upsets, ultimately 
reducing the predictive accuracy of these models to below 
the seeding baseline itself (McCrea and Hirt 2009).

Problem 2: Success metrics are diverse. The evalua-
tion metric or loss function used to rank tournament pre-
dictions can vary widely, ranging from number of games 
predicted correctly to complicated point structures to log 
loss functions in which predictions have attached prob-
abilities. Simulations have shown that the choice of loss 
function can have significant impact on modeling choices 
(Kaplan and Garstka 2001).

Problem 3: Archival data is a trove of predictive fea-
tures. This category of the literature, which represents 
the majority of contributions, focuses on model and 
variable selection, with an emphasis on mining histori-
cal data for predictive features. Iterative computational 
ranking systems such as those by Sagarin (2014) and 
Pomeroy (2014) have risen to prominence in recent years. 
Sagarin, for example, combines winning margin, strength 
of schedule, and performance against well-ranked teams 
while incorporating home- or away-game metadata.1 
Sokol’s logistic regression Markov chain (LRMC) method 
first estimates head-to-head differences in team strength, 
then leverages a Markov chain model to converge upon 
rankings (Sokol 2014).2 After computing these features, 
the LRMC method fits a logistic regression model in which 
a win or loss is a function of both teams’ rankings within 
each feature set (Carlin 1996; Koenker and Bassett Jr. 
2010). Many of these models have enjoyed good predictive 
success, and have withstood challenges from larger and 
more complicated models (Toutkoushian 2011).

In this paper, we expand upon the existing literature 
by experimenting with a large set of features and a rich 
collection of predictive models. Our findings support the 
idea that parsimonious feature sets and relatively simple 
algorithms tend to outperform more complicated models 
with numerous features.

3  Features
The game of basketball provides numerous statistics for 
performance evaluation. Evaluation metrics at the college 
level cover a variety of resolutions – from the individual 
player to a subset of players to the team to the entire 
university athletic program. Aggregate statistics, which 

1 An update to these ranking schemes weights more recent perfor-
mance more highly to reflect improvement; see, for example, Charti-
er Timothy et al. (2011).
2 This model has been updated to replace the MC step with an em-
pirical Bayes model, showing significant improvement (Brown and 
Sokol 2010).
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are generated from combined raw statistics as a means 
of reducing the dimensionality of a team’s overall per-
formance, are popularly used for predicting tournament 
brackets. For example, the NCAA uses the Ratings Per-
centage Index (RPI), which combines a team’s win per-
centage, opponents’ win percentages, and opponents’ 
opponents’ win percentages, to seed teams for the March 
Madness tournament. Two well-known independent 
aggregate statistics used in our models are Ken Pomeroy’s 
Pomeroy Ratings (Pomeroy 2014) and Sonny Moore’s 
Computer Power Ratings (Moore 2014). Pomeroy Ratings 
exist from the 2003–2004 season onward, and are based 
on Pythagorean expectation (Hamilton 2011), which is a 
way of estimating a team’s expected winning percentage 
against an average Division I team, accounting for offen-
sive efficiency (points scored per 100 possessions) and 
defensive efficiency (points allowed per 100 defensive 
possessions). Moore’s Power Ratings, available since 1997, 
represent the expected score of a given team (with a 3.7 
point advantage given to the home team). We culled these 
aggregate statistics from publicly available online sources. 
We also obtained NCAA raw statistics from ESPN’s archive 
of men’s basketball statistics, which includes archival 
data going back to the 2001–2002 season.

All our modeling teams had access to the same data-
sets, but not all teams employed the same features in their 
models. In particular, almost all teams used the Pomeroy, 
Moore, and Massey metrics, whereas only a subset of the 
teams leveraged RPI and the ESPN statistics. We reserve 
details of individual modeling teams’ feature datasets 
for Section 4. Here, we provide an overview of the data 
sources we used:

 – Pomeroy (9 statistics) – Ken Pomeroy’s statistics are 
based on offensive and defensive efficiency (i.e. the 
number of points scored or allowed per 100 posses-
sions adjusted for the strength of competition). He 
also provides a measure for “strength of schedule” 
and an index of “luck,” represented by the deviation 
between a team’s actual winning percentage and what 
one would expect from its game-by-game efficiency 
scores (Pomeroy 2014).

 – Moore (1 metric) – Sonny Moore’s Power Ratings (PR) 
provides a systematic ranking of all the tournament 
teams, where each team’s PR indicates the team’s 
forecast relative performance, if all teams were to play 
against each other (Moore 2014). A team’s PR reflects 
how the team has performed in previous games and 
takes into consideration wins and losses, the oppos-
ing teams’ PRs, and the actual score difference of the 
games played. The difference between two teams’ PRs 
is equal to the predicted point differential if a game 

were played on a neutral court (3.7 points would be 
added for a home team advantage).

 – Massey (33 ranking systems) – Kenneth Massey’s 
website (Massey 2014) provides rankings for the tour-
nament teams based upon a collection of 33 different 
human and algorithmic ranking systems, including 
Associated Press, Sagarin Predictor, Moore, Baker 
Bradley-Terry, and others. Note that these are ordinal 
rankings rather than specific ratings.

 – ESPN (7 statistics total) – Official NCAA Division I 
men’s basketball regular-season team level summary 
statistics are provided by ESPN’s website (ESPN 2014). 
The ESPN raw metrics we collected were: points per 
game, average scoring margin, number of personal 
fouls per game, turnovers per game, total rebounds per 
game, offensive efficiency, and defensive efficiency.

 – Rating Percentage Index – RPI is a quantity used to 
rank sports teams based on a team’s wins and losses, 
corrected for its strength of schedule. For college bas-
ketball, a team’s RPI is defined as:

RPI (Winning Percentage*0.25)
(Opponents’ Winning Percentage*0.50)

Opponents’ Opponents’ Winning Percentage*0.25).

= +

+

3.1  Contamination

When selecting archival data to feed into predictive 
models of sporting events, it is critical to ensure that “the 
past” doesn’t contain its own future. Our predictions of 
the 2014 NCAA tournament results were derived from 
models in which previous tournament results were a func-
tion of covariates from previous years. If those covariates 
include metrics that incorporate previous tournament 
outcomes, the input features essentially already “know” 
the future that they aim to predict. As a result, seem-
ingly successful prediction will, in fact, rely heavily upon 
anachronous metrics – rendering such models inept for 
true future prediction. We refer to this phenomenon as 
data contamination.

Contamination can be a serious problem if the data 
on which one trains a model contains different informa-
tion from the data on which one predicts future results. 
For example, running a logistic regression on all fea-
tures independently reveals that the strongest predic-
tive statistic for how well a team performs is the number 
of games played (GP) in a given season. All NCAA bas-
ketball teams complete 29–31 games in regular season 
play (MomentumMedia 2006). During March Madness, 
however, the tournament is single-elimination, so the 
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two best teams always play the most tournament games 
(and therefore have the highest overall GP for that year). 
As such, in tournament predictions prior to 2014, GP 
proved an excellent, but contaminated, predictor of 
March Madness performance. Attempting to use 2014 
team GP as a predictive feature would necessarily result 
in poor performance, since by the start of the tourna-
ment, all teams had played roughly the same number of 
games. In this way, inadvertent use of contaminated pre-
dictors in archival models can easily lead to disastrous 
outcomes in actual forecasting.

Other statistics with contaminated information 
include the Pomeroy Ratings and Moore Power Rankings, 
two metrics for which the publicly available historical 
data sets are made of post-tournament rankings. Note, 
however, that the Moore Power Rankings are available 
monthly, so pre-tournament iterations are still accessible. 
After the 2014 tournament, Ken Pomeroy generously pro-
vided us with pre-tournament Pomeroy Ratings. As such, 
in Section 6 we use this gold standard to study the magni-
tude and effects of contamination.

4  Models
We produced over 30 models to predict win probabilities 
for all 2278 possible matchups3 in the 2014 NCAA Men’s 
Division I Basketball tournament. Initial attempts at model 
development were highly diverse, including pairwise-
comparison algorithms such as the Bradley-Terry logit 
model (Huang, Weng, and Lin 2006) as well as general 
classification methods like probabilistic support vector 
machines (Platt 1999). Of the final models, the majority 
were variants of logistic regression, though boosted tree 
models and neural networks also achieved some measure 
of success.

We trained the models on 10 years of historical NCAA 
tournament results from seasons 2003–2004 through 
2012–2013.4 To guide model development, we used “leave-
one-season-out” cross validation. For each left out season, 
we trained the models on tournament outcomes from the 
other nine seasons and computed the log loss on the test 
tournament.

Being limited to 10 years’ worth of archival data 
constrained our choices for modeling algorithms. For 
example, we found that random forests, implemented 
using the randomForest package in R (Liaw and 
Wiener 2002), performed worse than logistic regres-
sion because there wasn’t enough data to grow trees of 
sufficient depth. Although we could obtain numerous 
descriptive features to use as predictors, the amount of 
information we had for making playoff predictions was 
ultimately limited by the number of games for which we 
had results.  Covariate selection was limited by the need 
to use metrics that extended back 10 years.

Following, we describe our most successful modeling 
approaches.

4.1  Logistic regression

The most successful approach across multiple evaluation 
metrics was logistic regression. Logistic regression has 
many attractive properties for the March Madness chal-
lenge: it naturally produces win probabilities, provides 
an intuitive interpretation of fitted values in terms of odds 
ratios, and is readily implemented in standard software 
packages. Its success is also unsurprising, given that log 
loss was the performance measure and that we trained our 
models on a relatively small number of tournament games 
(a total of 10 seasons, 63 games each). The logistic regres-
sion model assumes a binomial distribution for a binary 
response alongside a logit link function. Let n index the 
number of Bernoulli trials that constitute a particular 
binomial observation and N index the number of observa-
tions. Let yi , i = 1, …, N, be the proportion of “successes” 
out of ni independent Bernoulli trials, so ni yi ∼ Bin(ni , πi), 
with E[yi]  =  πi independent of ni . Let xij , i = 1, …, N, j = 1, …, 
p, be the j th predictor for observation i. The logistic regres-
sion model is then expressed as
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Considering the large number of covariates and rela-
tively few data points, overfitting and multicollinearity 
were notable concerns. The majority of our logistic regres-
sion models employed regularized regression to address 
this problem, with common choices including L1 (LASSO) 
and L2 (ridge) regularization (Demir-Kavuk et al. 2011), as 
well as stepwise subset selection. In each of our logistic 
regressions, we standardized all the feature values by 
season prior to model fitting.

3 With 68 teams in contention at the start of the tournament, there  

are 
68

2278
2

 
= 

 
 total possible pairings.

4 Our choice to limit archival data input to the past 10 years was due 
to the Pomeroy data only including the most recent 10 NCAA seasons.
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For all the models we describe below, we used the 
difference of competing teams’ (standardized) metrics 
as model predictors. All teams were randomly assigned 
unique integer IDs, and the response was defined as 
whether or not the team with the smaller ID won the 
match.

4.1.1   Model A: Logistic regression with backward 
elimination

We fitted a logistic regression model, including all covari-
ates, to the training data. Covariates with significance 
levels  <  0.1 were then iteratively pruned to produce the 
final fitted model. Here, we used Pomeroy, Moore, Massey, 
RPI, and ESPN features.

4.1.2  Model B: Logistic regression with L2 regularization

L2-regularized regression, or ridge regression, minimizes 
the residual sum of squares under a constraint on the sum 
of the squared coefficients:
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The tuning parameter λ controls the amount of shrinkage 
applied to the parameter estimates. The optimal value of 
λ is chosen by 10-fold cross validation over the training 
set, i.e., the tournament games of all preceding seasons, 
back to year 2003. In particular, the largest value of λ 
within 1 standard error of the minimum is used, so as to 
prevent overfitting. An advantage of ridge regression over 
sequential variable selection (as in model A) is stability: 
whether a predictor is included or excluded by a stepwise 
variable selection method often comes down to very slight 
variations in the data. As ridge regression is a continuous 
process that shrinks coefficients towards zero, it is less 
sensitive to the natural variability of the data than sequen-
tial selection approaches. Here, we used Pomeroy, Moore, 
Massey, and RPI features.

4.1.3   Model C: Logistic regression with L1  
regularization

L1-regularized regression, commonly known as the LASSO 
(Tibshirani 1996), combines the stability of ridge regres-
sion with the easy interpretability offered by stepwise 
variable selection. LASSO minimizes the residual sum of 

Table 1: Summary of logistic-based models’ feature categories. 
The numbers under each feature category name indicate the total 
number of metrics from that source that was included in the final 
fitted model.

Model 
  

Feature category

Massey   Pomeroy   ESPN  Moore    RPI

A   9  3  1  Yes   No
B   12  9  0  Yes   Yes
C   9  8  0  Yes   No

squares under a constraint on the sum of the absolute 
value of the coefficients:
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Like λ in the case of ridge regression, C controls the 
amount of shrinkage applied to the LASSO parameter 
estimates. We chose the optimal value of C by perform-
ing 10-fold cross validation over the training set, i.e., the 
tournament games of all preceding seasons, back to year 
2003. In particular, we used the largest value of C within 
1 standard error of the minimum, to prevent overfitting. 
Unlike ridge regression, LASSO encourages parameter 
sparsity. We used Pomeroy, Moore, and Massey metrics as 
input features for this model.

The resulting features used in each implementation of 
the logistic regression models are summarized in Table 1. 
The numbers under each data source indicate the total 
number of features from that source that was included in 
the final fitted model; that is, after variable selection was 
completed.

4.2  Model D: Stochastic gradient boosting

Boosting is an iterative algorithm that takes a weighted 
average of simple classification rules with mediocre mis-
classification error-rate performance (known as base learn-
ers) to produce an overall highly accurate classification 
rule (Friedman 2001). The method originates from Prob-
ably Approximately Correct (PAC) computational learning 
theory, which states that when appropriately combined, 
classifiers that individually exhibit a performance slightly 
better than random guessing can perform very well. Boost-
ing trains the base learners and determines their weights 
by relying on a gradient descent search, iteratively adding 
basis functions in a greedy fashion so that each additional 
basis function further reduces the selected loss function. 
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Stochastic gradient boosting (SGB) is a modification of 
boosting wherein at each iteration of the gradient descent 
search, a base learner is fit on a stochastic subsample of 
the training set. Using a random subsample of the training 
set acts as a kind of regularization to help prevent over-
fitting, and also reduces computation time. This method 
was implemented using the gbm package (Ridgeway 2007) 
in R.

Stochastic gradient boosting can be implemented 
with different loss functions. In keeping with the primary 
assessment metric for the March Madness Kaggle com-
petition, we used log loss. We performed 10-fold cross-
validation on the training set of previous tournament 
seasons 2003–2004 through 2012–2013 to optimize tuning 
parameters, resulting in a SGB model for season 2014 
parameterized by 10,000 trees, a shrinkage parameter of 
0.0005, and an interaction depth of 5. Pomeroy, Moore, 
and Massey features were used as inputs to the model.

4.3  Model E: Neural networks

Neural networks are a biologically inspired class of non-
linear learning algorithms (Cochocki and Unbehauen 
1993) that have been implemented in many circumstances, 
notably the neuralnet package in R (Fritsch, Guenther, 
and Guenther 2012). Each vertex, or neuron, receives an 
input xi from each incoming edge, and sends an output 
f(x)  =  f(x1, …, xn) along each outgoing edge, where

( ) ( )f g= ⋅x w x

for weights w  =  (w1, …, wn) and activation function g: 
ℝ→ℝ. In other words, each neuron computes a weighted 
sum of its inputs, and then passes that sum through an 
activation function. The simplest neural networks are 
feed-forward neural networks, which structure their 
neurons into three sections of layers: an input layer, which 
receives the input variables; an output layer, which com-
putes the predictions; and any number of hidden layers 
in between. When all nodes in each layer are connected 
to all nodes in the following layer, the network is “fully 
connected”. The weights on a neural network are learned 
by minimizing a cost function such as squared error or log 
loss, often through gradient descent. The main algorithm 
for performing gradient descent on the weights of a neural 
network is called backpropagation, described in detail in 
Hastie, Tibshriani, and Friedman (2009).

The neural network used to predict the 2014 NCAA 
Tournament victory probabilities was a fully connected 
feed-forward neural network. The number of hidden 
layers, the number of nodes in each hidden layer, as well 

as the type of activation function at each node (logis-
tic vs. sigmoid) were determined via cross-validation. 
 Specifically, we used 10-fold cross validation to select 
these model features, ultimately choosing the model 
using the fewest nodes within one standard deviation 
of the minimum error. For the final model, we chose a 
neural network with a single 5-node hidden layer and a 
single-node output layer. Every node used a logistic acti-
vation function, and model performance was evaluated 
by log loss. Training continued until the partial derivative 
of the log loss was < 4 (a threshold also chosen by cross 
validation).

A variant of the backpropagation algorithm known 
as resilient backpropagation with weight backtrack-
ing (RPROP+) was used to perform the gradient descent  
(Riedmiller and Braun 1993). The inputs to the network 
were 12 Massey ordinal rankings, 4 Pomeroy rankings, 
and the Moore metric.

4.4  Ensembles

In ensemble learning methods, predictions from mul-
tiple learning algorithms (“weak learners”) are com-
bined together (“stacked”) in some weighted fashion by 
an umbrella regression or classification model (“meta 
learner”) in order to produce final predictions. Follow-
ing is a discussion of four ensemble models built after 
the NCAA 2014 tournament took place, combining the 
results of the best-performing models produced prior to 
the tournament. All four ensembles were produced using 
logistic regression as the meta learner. That is, we first 
trained our logistic regression meta learner on individual 
weak learners’ predictions for five historical tournament 
seasons (seasons 2008–2009 through 2012–2013). After 
determining the weights for each weak learner, we then 
fed the weak learners’ 2014 March Madness predictions 
into the ensemble model to generate stacked predictions 
for the 2014 season.

Our largest ensemble stacked all five models pre-
sented above: three logistic regression models (models A, 
B, C), the stochastic gradient boosted tree model (model 
D), and the neural network (model E). A second ensemble 
stacked the three logistic regression models (A, B, and C) 
to see how much additional predictive accuracy we could 
obtain by combining results from slight variations in logis-
tic regressions. Models B and D were stacked in a third 
ensemble and models B and E were stacked in a fourth 
ensemble to see how the best performing logistic regres-
sion model stacked with each of the non-logistic regres-
sion models would perform. Out of the four ensembles, the 
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BD ensemble gave the smallest log loss for season 2014. A 
reason for this may be that models B and D capture very 
different predictive qualities of the metrics. Indeed, the 
predicted victory probabilities produced by models B and 
D are essentially uncorrelated (0.02). In contrast, the cor-
relations between predictions produced by models A, B, 
C, and E range between 0.72 and 0.96. All the stacked algo-
rithms’ log loss performances are summarized in Table 2, 
along with log loss values for the individual models and 
several benchmark log losses obtained from the Kaggle 
website.

Table 2: 2014 NCAA tournament log losses for logistic regression 
models (A, B, C), stochastic gradient boosted tree model (D), neural 
network (E), various stacked algorithms, and two naive benchmarks. 
The average Kaggle log loss score was 0.58.

Model   Log loss

A   0.67
B   0.61
C   0.71
D   0.98
E   0.84
Stacked (A, B, C, D, E)   0.77
Stacked (A, B, C)   0.75
Stacked (B, D)   0.63
Stacked (B, E)   0.86
All 0.5 benchmark   0.69
0.5+0.03* (Seed difference) benchmark  0.60
Mean Kaggle score   0.58
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Figure 1: Heatmap comparing various models’ predictions across the round of 32 of the 2014 NCAA tournament.

It is interesting to note that the ABC ensemble resulted 
in a log loss that is higher than that of its individual con-
stituents. Stacking algorithms are generally expected to 
perform at least as well as the individual weak learners 
that comprise it, but we did not find this to be the case in 
our ensembles of models A through E. While model over-
fitting may have been the culprit, another possibility is 
that some of the features we used to train our models were 
“contaminated”, in the sense that they incorporated post-
tournament information. We further address this hypoth-
esis in Section 6, where we find evidence that many of our 
metrics were indeed contaminated, leading to poor pre-
dictive performance in the 2014 tournament.

A series of heatmaps (Figures 1 and 2) provide a visual 
representation of the various models’ performance for each 
round of the NCAA tournament. We graphed the absolute 
value of the actual outcome of each game from the tour-
nament minus the victory probability we  predicted. For 
example, suppose in a game between team 1 and team 2, 
we predicted a probability of 0.94 that team 1 would win, 
and team 1 in fact did win. The distance of prediction from 
observed for this game would then be |1–0.94| = 0.06. On 
the other hand, if team 2 won, the resulting distance of 
prediction from observed would be |0–0.94| = 0.94. Note 
that the smallest distance possible is 0, while the largest 
possible distance is 1. The winners are always listed first 
in the pairing.

Though the heatmaps do not report log loss, they do 
let us visualize both correlations and successes/failures 
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of our models on specific games. Together with the log 
losses provided in Table 2, we were able to examine our 
models’ specific strengths and weaknesses. We first noted 
the strong correlations between predictions from models 
A, B, C and predictions from ensemble models ABC and 
ABCDE. This makes intuitive sense since the stacked 
predictions are composites of the individual A, B, and C 
models. The strong correlation between models A and 
C can be explained by the close relationship between a 
simple logistic regression and a logistic regression with L1 
regularization. Model B (another logistic regression, but 
with L2 regularization) is, unsurprisingly, also strongly 

correlated with models A and C. However, model B out-
performs the other two – a phenomenon illustrated in the 
heatmaps: model B, while often predicting the same out-
comes as models A and C, has lighter shades of red. On 
the other hand, model B also tends to have darker shades 
of green. This indicates that model B generally has less 
confident predictions than models A or C. As discussed 
later and shown in Figure 3, under a log loss criterion, the 
penalty of an overly confident incorrect answer is severe –  
more extreme than the reward of having a confident 
correct answer. The relatively low confidence of model B 
predictions visualized in the heatmaps thus corresponds 
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Figure 2: Heatmaps comparing various models’ predictions across the round of 16, round of 8, round of 4, semifinals, and finals of the 
2014 NCAA tournament.
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to superior log loss performance of the model, compared to 
the other models we implemented. That said, models that 
give timid predictions across the board do not perform well, 
either, as illustrated by the BE ensemble, whose majority of 
predictions fall within the range of 0.35 and 0.65.

Although models D and E did not perform as well as the 
logistic regression variants, we expected them to provide 
alternate predictive strengths not reflected in models A, 
B, and C. Examination of Figures 1 and 2 suggested that a 
complementary advantage model D provides is the correct 
prediction of upsets. In the world of NCAA March Madness, 
upsets are often the most exciting games, yet also the most 
difficult to predict. Upsets in the round of 32 like No. 14 
Mercer beating No. 3 Duke or No. 12 SF Austin beating No. 5 
VA Commonwealth (Figure 1), or upsets in the later games 
like No. 11 Dayton beating No. 3 Syracuse or No. 7 Con-
necticut beating No. 1 Florida, could be detrimental to our 
models’ predictive performance. Interestingly, it is in these 
upsets where model D stands out as being the sole model 
that predicts the correct outcome. Even though model D was 
the worst performing model overall, it managed to predict 
upsets that the other models failed to predict. Therefore, 
when stacked with model B (the best performing individual 
model) the resulting BD ensemble ended up having a mark-
edly smaller log loss than the other ensemble methods we 
investigated.

Model E, on the other hand, had the ability to make 
correct predictions for games where our other models 
heavily favored the underdog. This was especially notice-
able in two games: No. 5 St. Louis vs. No. 12 NC State and 
No. 6 North Carolina vs. No. 11 Providence (Figure 1). In 
both games, the higher-ranked team won. However, our 
logistic regression models clearly favored the underdog. 
Why? A closer look at historic data revealed that St. Louis 
and Providence had very few appearances in previous 
tournaments. St. Louis, for example, had only two pre-
vious appearances in the tournament. Providence only 
had one. Logistic regression models are relatively sensi-
tive to the number of observations used to estimate model 
parameters. A lack of sufficient data can result in huge 
errors and wildly inaccurate point estimates. This might 
have been why models A, B, and C failed to make the 
correct predictions for these two games. The lack of his-
toric data for St. Louis and Providence resulted in logistic 
models that sported both inaccurate and imprecise point 
estimates. In contrast, models D and E performed quite 
well in predicting the outcome of these two games. Both 
models slightly favored St. Louis and North Carolina, both 
of whom ended up being the winner. Since models D and 
E are flexible nonlinear models, they rely less on trying 
to fit these teams with few historical observations into 

an oversimplified parametric model, and more on using 
observed empirical results.

Lastly, by focusing on the reddest columns of our 
heatmaps, we realized that our models’ main failure was 
in predicting the two championship teams’ progression 
to the final match. At the start of the tournament, Con-
necticut and Kentucky were neither highly ranked nor 
lowly ranked, yet both teams were incredibly successful 
in their bid for the championship. In one respect, one 
could say these two teams had a string of lucky upsets. 
A more insightful conclusion, however, would be to posit 
that our models fail to capture important qualitative 
effects specific to the tournament. First, regular season 
and playoff games are markedly different, yet our models 
ultimately treat them similarly. Our models do not reflect 
the fact that while Connecticut and Kentucky had moder-
ate seasons, historically during tournament play, these 
two teams step up their game entirely. Our models also 
fail to capture effects such as motivation. Both basket-
ball teams, with huge fan bases rallying behind them 
and intense sports coverage online, may have held an 
advantage by being more highly motivated teams. Fur-
thermore, these two teams appeared in almost all ten 
seasons of our data (Connecticut in eight and Kentucky 
in nine). In other words, they had been successful every 
year in making the playoffs and winning titles (Con-
necticut won in 2004 and 2011; Kentucky won in 2012). 
As a result, these teams had more experience playing 
in the tournament. Not only did the players have more 
experience, but the coaches were also more seasoned 
leaders. Our models’ inability to see that Connecticut 
and Kentucky had so much success in the past resulted 
in treating them as only mediocre teams, rather than the 
champion teams that they actually were.

5  Loss functions
We used the log loss metric to compare performance 
among models; however, several other cost functions can 
be applied to assess predictive accuracy in the context of 
tournament forecasting. In this section, we explore some 
of the properties of log loss and consider our models’ rela-
tive performance across other cost functions.

5.1  Log loss

Log loss (Equation 1) is a convenient metric, in part 
because of its connection to the Kelly betting strategy. 
Specifically, the Kelly criterion says that proportional 



22      L.-H. Yuan et al.: A mixture-of-modelers approach to forecasting NCAA tournament outcomes

gambling is log-optimal, meaning that a gambler should 
bet exactly *jp  percent of her wealth on outcome j if the 
chance of outcome j is *.jp  This allocation strategy maxi-
mizes the bettor’s doubling rate at *log *j jp p C+∑  where 
C is a function of the payoffs, but not the bet allocations 
(Cover and Thomas 2012).

By the law of large numbers, in repeated bets i = 1, …, N 
of the same game, the log loss converges:

1 1

, ,
1 0 0

1log loss log * log
N

i j i j j j
i j j

y p p p
N = = =

= − → −∑∑ ∑

Thus, the log loss function approximates the long 
run doubling rate given betting strategy pj , under true 
outcome probabilities *.jp  The difference between the 
doubling rates of the optimal strategy and chosen strat-
egy, *log * * log ,j j j jp p p p−∑ ∑  is minimized at zero when 

*= .j jp p
This loss function highly penalizes confident-but-

incorrect predictions, even for a single observation, since 
the log of an incorrect prediction diverges to –∞ (i.e. the 
bettor loses all of her wealth). Figure 3 shows how the 
loss function performs for correct versus incorrect predic-
tions. The penalty for a confident but incorrect prediction 
is much larger than that for an incorrect, unconfident 
prediction. A model’s goal is to minimize the value of the 
evaluating cost function. Therefore, we aimed to be confi-
dent in our correct answers and unconfident in our incor-
rect ones.

5.2  Fencing log loss

The log loss penalty grows exponentially as an incor-
rect prediction approaches perfect confidence. A small 
handful of highly confident incorrect predictions can 
have an enormous negative impact on overall loss mini-
mization. Accordingly, tournament games that resulted 
in unexpected upsets have an outsized effect on the total 
log loss score. One approach to address this is to make 
the predictions systematically less confident. Consider 
a set of predictions with many win probabilities around 
0.99 and others close to 0.01. Being wrong about any of 
these extreme votes is very costly (and very likely given 
the frequency of upsets in NCAA tournaments), so we 
might consider fencing in our predictions. This entails 
establishing an artificial limit at a given distance from 
absolute confidence (i.e. zero or one) in both directions. 
All predictions which fall outside this range are then 
mapped onto the extrema of the new, fenced-in range. 
With a fence of 0.1, a probability of 0.97 would become 
0.9 and a probability of 0.08 would become 0.1. Figure 4 
shows the results of fencing on the log loss of each of the 
models’ predictions.

While we found that fencing does help reduce log 
loss, it is only effective among those models which per-
formed poorly in the first place. Model B, our best per-
forming model, gets successively worse as the predictions 
are shrunk towards 0.5. Models D and E, which performed 
the worst, improve rapidly as the predictions approach 

0.8

Log loss with fenced predictions

No fence
Fence 0.05
Fence 0.2
Fence 0.4

0.6

0.4

0.2

0.0
A B C D E

Figure 4: The result of fencing each model different distances. The grey line is a predictive baseline, indicating the log loss if all predic-
tions are set to 0.5. A lower log loss is a better score.
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0.5. More specifically, fencing the log loss has the effect 
of increasing expected loss (at least in the case of logistic 
regression), but because it prevents a major accumulation 
of loss after an upset, it therefore controls the variance of 
the observed loss.

5.3  Performance on other metrics

In addition to log loss, we considered both classification 
error and area under the curve (AUC). To calculate classi-
fication error, we set a decision boundary at a probability 
of 0.5. In Figure 5, rather than display AUC, we used the 
quantity 1–AUC in order to compare the three cost func-
tions we wished to minimize.

Interestingly, we found that the choice of loss func-
tion does not have a large impact on model assessment. 
Given the small size of the test set – 63 games to predict – 
and only a handful of models, all of which predict roughly 
two-thirds of game outcomes correctly, changing the cost 
function does not drastically change our interpretation of 
which models are most effective.

6  Data decontamination
Data contamination, wherein predictive feature values 
incorporate post-tournament results, seriously hindered 
our models’ success. A post-hoc analysis of our models 
allowed us to investigate the effects of this data contami-
nation and develop methods to ameliorate it. After the 
conclusion of the NCAA tournament, we obtained pre-
tournament Pomeroy ratings (4 total) and pre-tournament 
Massey system rankings (13 systems total), and attempted 
to recover the prediction accuracy we would have obtained 
had we used uncontaminated pre-tournament data. 
This was accomplished through two “data decontamina-
tion" procedures in which we regress 1) post-tournament 

features, or 2) the difference between pre- and post- 
tournament features, on the round in which a team was 
eliminated from the tournament, thereby controlling for 
tournament performance.

6.1   Pre-tournament vs. post-tournament 
features

It is reasonable to expect that team-level metrics obtained 
prior to the NCAA tournament differ from those obtained 
after the tournament, reflecting the difference between 
average team performance during the tournament and 
average team performance during the season. Simply put, 
a team’s average statistic during the tournament will likely 
not be the same as that team’s average statistic during the 
season. As an illustration, we provide box plots showcas-
ing pre- and post-tournament values for two predictors 
used in most of our models: Pyth,5 a Pomeroy metric, and 
MOR, a Massey ranking. Figures 6 and 7 show the pre- and 
post-tournament Pyth and MOR values of the 346 teams 
that played in the 2013 season, plotted against the round in 
which a team lost and was eliminated from the tournament. 
It appears that teams eliminated in the first round had, on 
average, better scores on these metrics before the tourna-
ment than after, reflecting poor tournament performance. 
The difference between pre- and post-tournament scores is 
larger for teams that perform better in the tournament and 
thus get eliminated in later rounds. We call predictors that 
follow this pattern “contaminated”. Including contaminated 
features in models designed to predict tournament perfor-
mance reduces predictive accuracy through overfitting.

To better quantify the impact of using contaminated 
features for tournament predictions, we re-ran several 
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Figure 5: Model performance under three metrics: 1) log loss, 2) 1–AUC, 3) classification error.

5 The Pyth metric is a continuous Pomeroy statistic that estimates 
a team’s expected winning percentage against an average Division-I 
team.
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Figure 6: Pomeroy’s Pyth metric for the 346 teams that played in the 2013 season, plotted against the round in which each team lost a 
match and was eliminated from the NCAA tournament. The difference between pre- and post-tournament Pyth distributions reflects the 
degree to which the post-tournament version of the Pyth scores incorporates tournament performance. For example, the average pre- 
tournament Pyth value for the two teams that lost in the Final Four is 0.87 while the average post-tournament Pyth value for the two teams 
that lost in the Final Four is 0.91.
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Figure 7: MOR ordinal rankings for the 346 teams that played in season 2013, plotted against the round in which each team lost a match 
and was eliminated from the NCAA tournament. The difference between pre- and post-tournament MOR distributions reflects the degree 
to which the post-tournament version of the MOR scores incorporates tournament performance. For example, the average pre-tournament 
MOR ranking for the two teams that lost in the Final Four is 27 while the average post-tournament MOR ranking for the two teams that lost in 
the Final Four is 12.

of our models using only pre-tournament Pomeroy and 
Massey metrics, then compared the resulting log losses to 
the same models fitted with the post-tournament Pomeroy 
and Massey statistics. To make predictions for seasons 
2009–2013, we trained our models on (either pre- or post-
tournament) data from seasons 2004–2013, excluding 
the season we aimed to predict. The log losses reported 
for season 2014 were generated from models trained on 
data from seasons 2004–2013. In the following section, we 

discuss ways to mitigate the negative effect of training on 
post-tournament data.

6.2  Decontaminating post-tournament data

To reduce the impact of post-tournament contamination, 
we regressed each team-level post-tournament metric 
which we believed to be contaminated, on the round in 
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which that team was eliminated. This allowed us to control 
for the information in the contaminated metric reflecting 
a team’s tournament success. We called this regression 
method Model I. We hypothesized that substituting the 
residual errors from Model I regressions as “decontami-
nated metrics” in place of the original contaminated fea-
tures might lead to lower log loss.

A second way to remove the effects of contamination 
is to first regress the difference between pre- and post-tour-
nament metric values for each team, for example Pythpre–
Pythpost, on the round in which each team was eliminated. 
We called this regression Model II. We then substituted 
the original 2004–2013 seasons’ post-tournament features 
with {Post-tournament metric values + predictions from 
Model II} in order to train our classification models and 
make season 2014 predictions. Figure 8 illustrates how 
elimination round regression coefficients differ when 
metrics are decontaminated using either Model I or Model 
II. Note that Model II, the “Pre-Post” method, successfully 
controls for tournament performance, as the coefficient 
value is uncorrelated with elimination round.

The results are summarized in Table 3.6 Using post-
tournament features (from seasons 2004–2013) to train 
our models and make predictions for seasons 2009–2013 
generally improved the log losses for those seasons, espe-
cially among logistic regression models. However, log 

losses for the 2014 season were much worse when we 
trained our models using post-tournament rather than 
pre-tournament features.

Table 3 also summarizes log loss results when 
decontaminated data was used in place of the original 
post-tournament metrics. Using Model II to obtain decon-
taminated data generally produced lower log loss than 
using Model I. For seasons 2009–2013, using decontami-
nated data did not produce better log loss than using the 
original contaminated data, but for season 2014, the log 
loss for predictions derived from decontamination Model 
II was lower than the contaminated log losses, and closer 
to the log losses we would have obtained using only pre-
tournament metrics.

7  Conclusions
In this paper, we presented a suite of models for pre-
dicting the outcome of the 2014 NCAA Men’s Basketball 
tournament. We intend this work to serve as an empirical 
evaluation of available forecasting methods for tourna-
ment basketball, as well as highlight some of the chal-
lenges that inevitably arise with limited, and potentially 
biased, data.

We analyzed model performance on a number of 
different cost functions, with log loss as the primary 
metric. Across a wide range of modeling efforts, we 
found that logistic regression, stochastic gradient boost-
ing, and neural network algorithms provided the best 
performance. We also experimented with a number of 
ensembling approaches, but discovered that they did not 
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Figure 8: Elimination round slope coefficients for Pyth and MOR metrics, obtained via Model I (Post) vs. Model II (Pre-Post).

6 Since we obtained pre-tournament data only from Pomeroy and 
Massey, and only for years 2004–2010 and 2012–2014, these were the 
only two data sources and the only years we considered in our data 
decontamination analyses. In this section of the paper, when we ref-
erence a time span such as 2004–2013, it is with the understanding 
that year 2011 data is excluded.
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outperform our individual models, perhaps due to overfit-
ting and data contamination.

Unfortunately, most of our models did not perform 
better than an all 0.5 baseline prediction. This is unset-
tling, and urges us to ask why our models didn’t perform 
as well as a naive model. Perhaps we should have defined 
features differently (for example, used individual team 
metrics as input features, rather than the difference of 
competing teams’ feature values as inputs). Perhaps we 
should have used simple but tried-and-proven metrics like 
seed difference. Furthermore, some of our models used 
regular season game outcomes to predict 2014 playoff 
results, which – in light of anecdotal evidence that pre-
dicting regular season games is fundamentally different 
from predicting tournament playoffs – may have hurt us.

In addition, our selection of learning algorithms was 
limited by the quality of data available to us. In particu-
lar, many powerful algorithms, including random forests 
and some forms of neural networks, need a lot of data to 
train properly. With only a few dozen games per tourna-
ment season, and going back only 10 years, the size of our 
data restricted our modeling choices. Many of our models 
also encountered significant overfitting issues due to the 
contamination of predictive features with post-tournament 
results. Attempts to decontaminate post-tournament data 
suggest that this bias can be partially corrected for, though 
decontaminated models still underperformed against 
models which only employed “pure” pre-tournament data.

We conclude with four recommendations for statisti-
cians interested in predictive modeling of the NCAA March 
Madness tournament: pay careful attention to the issue 
of feature contamination and feature selection, choose 
modeling approaches befitting the quality and quantity 
of available training data, customize algorithm selec-
tion based on target loss function, don’t cast aside simple 
models, as they may very well outperform complex models 

that are sensitive to many tuning parameters. Our findings 
suggest that the adoption of these recommendations will 
yield superior performance for future modeling efforts.
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